Skip to main content

Advertisement

Log in

Perindopril Dampens Cd-induced Nephrotoxicity by Suppressing Inflammatory Burden, Ang II/Ang 1–7, and Apoptosis Signaling Pathways

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is one of the most abundant toxic heavy metals, and its exposure is linked to serious kidney intoxication, a major health problem. Evidence reported that inflammatory damage is a key factor in Cd renal intoxication. Perindopril (PER) is an angiotensin-converting enzyme inhibitor approved for treating hypertension and other cardiovascular problems. Significantly, RAS activation results in inflammatory damage. Our study aimed to examine the renoprotective effects of PER in Cd-induced nephrotoxicity, the impact of inflammation, and the underlying molecular mechanisms. PER was given at a dose of 1 mg/kg per day. Cd was injected at a dose of 1.2 mg/kg, as a single dose. Treatment with PER led to a significant decrease in serum levels of urea, creatinine, uric acid, and urine albumin/creatinine ratio. PER effectively mitigated inflammation by decreasing MPO, NO, IL-1β, IL-6, and INF-γ levels mediated by downregulating NF-κB expression and suppressing JAK-1 and STAT3 phosphorylation. PER modulates Ang II/Ang 1-7 axis in Cd-intoxicated rats by decreasing Ang II expression and increasing Ang-(1-7) expression. PER inhibits Cd-induced apoptosis by lowering Bax, cytochrome c, and cleaved caspase 3 expressions while increasing Bcl-2 expression. In conclusion, PER dampens Cd-induced kidney intoxication by modulating Ang II/Ang 1-7 axis, suppressing NF-κB, JAK-1/STAT3, and apoptosis signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87. https://doi.org/10.1016/j.tox.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  2. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang H, Shu Y (2015) Cadmium transporters in the kidney and cadmium-induced nephrotoxicity. Int J Mol Sci 16(1):1484–1494. https://doi.org/10.3390/ijms16011484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobo‐Estrada T, Cardenas‐Gonzalez M, Santoyo‐Sánchez M, Parada‐Cruz B, Uria‐Galicia E, Arreola‐Mendoza L et al (2016) Evaluation of kidney injury biomarkers in rat amniotic fluid after gestational exposure to cadmium 36(9):1183-93

  5. Arab HH, Ashour AM, Eid AH, Arafa EA, Al Khabbaz HJ, Abd El-Aal SA (2022) Targeting oxidative stress, apoptosis, and autophagy by galangin mitigates cadmium-induced renal damage: role of SIRT1/Nrf2 and AMPK/mTOR pathways. Life Sci 291:120300. https://doi.org/10.1016/j.lfs.2021.120300

    Article  CAS  PubMed  Google Scholar 

  6. Yan LJ, Allen DC (2021) Cadmium-induced kidney injury: oxidative damage as a unifying mechanism. Biomolecules 11(11). https://doi.org/10.3390/biom11111575

  7. Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM (2022) The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 308:120971. https://doi.org/10.1016/j.lfs.2022.120971

    Article  CAS  PubMed  Google Scholar 

  8. ElMahdy MK, Antar SA, Elmahallawy EK, Abdo W, Hijazy HHA, Albrakati A et al (2022) A novel role of dapagliflozin in mitigation of acetic acid-induced ulcerative colitis by modulation of monocyte chemoattractant protein 1 (MCP-1)/nuclear factor-kappa B (NF-κB)/interleukin-18 (IL-18) 10(1):40

  9. Zhang H, Sun SC (2015) NF-κB in inflammation and renal diseases. Cell Biosci 5:63. https://doi.org/10.1186/s13578-015-0056-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gai L, Zhu Y, Zhang C, Meng X (2021) Targeting canonical and non-canonical STAT signaling Pathways in renal diseases. Cells 10(7). https://doi.org/10.3390/cells10071610

  11. Pace J, Paladugu P, Das B, He JC, Mallipattu SK (2019) Targeting STAT3 signaling in kidney disease. Am J Physiol Renal Physiol 316(6):F1151–F1161. https://doi.org/10.1152/ajprenal.00034.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ (2020) Targeting janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: rationale, progress, and caution. Pharmacol Rev 72(2):486–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li WX (2008) Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 18(11):545–551. https://doi.org/10.1016/j.tcb.2008.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bauer TM, Murphy E (2020) Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res 126(2):280–293. https://doi.org/10.1161/circresaha.119.316306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choe JY, Park KY, Kim SK (2015) Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy. Apoptosis: Int J Programmed Cell Death 20(1):38–49. https://doi.org/10.1007/s10495-014-1057-1

    Article  CAS  Google Scholar 

  16. Hurst M, Jarvis B (2001) Perindopril: an updated review of its use in hypertension. Drugs 61(6):867–896. https://doi.org/10.2165/00003495-200161060-00020

    Article  CAS  PubMed  Google Scholar 

  17. Todd PA, Fitton A (1991) Perindopril. A review of its pharmacological properties and therapeutic use in cardiovascular disorders. Drugs 42(1):90–114. https://doi.org/10.2165/00003495-199142010-00006

    Article  CAS  PubMed  Google Scholar 

  18. Abdel-Fattah MM, Salama AA, Shehata BA, Ismaiel IE (2015) The potential effect of the angiotensin II receptor blocker telmisartan in regulating OVA-induced airway remodeling in experimental rats. Pharmacol Rep : PR 67(5):943–951. https://doi.org/10.1016/j.pharep.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  19. El-Shoura EAM, Messiha BAS, Sharkawi SMZ, Hemeida RAM (2018) Perindopril ameliorates lipopolysaccharide-induced brain injury through modulation of angiotensin-II/angiotensin-1-7 and related signaling pathways. Eur J Pharmacol 834:305–317. https://doi.org/10.1016/j.ejphar.2018.07.046

    Article  CAS  PubMed  Google Scholar 

  20. de Cavanagh EM, Inserra F, Ferder L (2011) Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria? Cardiovasc Res 89(1):31–40. https://doi.org/10.1093/cvr/cvq285

    Article  CAS  PubMed  Google Scholar 

  21. Hassanein EHM, Saleh FM, Ali FEM, Rashwan EK, Atwa AM, Abd El-Ghafar OAM (2023) Neuroprotective effect of canagliflozin against cisplatin-induced cerebral cortex injury is mediated by regulation of HO-1/PPAR-γ, SIRT1/FOXO-3, JNK/AP-1, TLR4/iNOS, and Ang II/Ang 1–7 signals. Immunopharmacol Immunotoxicol 45(3):304–316. https://doi.org/10.1080/08923973.2022.2143371

    Article  CAS  PubMed  Google Scholar 

  22. Kamel EO, Gad-Elrab WM, Ahmed MA, Mohammedsaleh ZM, Hassanein EHM, Ali FEM (2023) Candesartan protects against cadmium-induced hepatorenal syndrome by affecting Nrf2, NF-κB, Bax/Bcl-2/Cyt-C, and Ang II/Ang 1–7 signals. Biol Trace Elem Res 201(4):1846–1863. https://doi.org/10.1007/s12011-022-03286-4

    Article  CAS  PubMed  Google Scholar 

  23. Atwa AM, Abd El-Ghafar OAM, Hassanein EHM, Mahdi SE, Sayed GA, Alruhaimi RS et al (2022) Candesartan attenuates cisplatin-induced lung injury by modulating oxidative stress, inflammation, and TLR-4/NF-κB, JAK1/STAT3, and Nrf2/HO-1 signaling. Pharmaceuticals 15(10). https://doi.org/10.3390/ph15101222. (Basel)

  24. Gilowski W, Krysiak R, Marek B, Okopień B (2018) The effect of short-term perindopril and telmisartan treatment on circulating levels of anti-inflammatory cytokines in hypertensive patients. Endokrynol Pol 69(6):667–674. https://doi.org/10.5603/EP.a2018.0068

    Article  CAS  PubMed  Google Scholar 

  25. Zvereva TN, Cherniavskaia E, Barbarash OL (2013) Effect of perindopril on the processes of subclinical inflammation in patients with arterial hypertension and type 2 diabetes mellitus. Kardiologiia 53(4):19–24

    CAS  PubMed  Google Scholar 

  26. Kamel EO, Hassanein EHM, Ahmed MA, Ali FEM (2020) Perindopril ameliorates hepatic ischemia reperfusion injury via regulation of NF-κB-p65/TLR-4, JAK1/STAT-3, Nrf-2, and PI3K/Akt/mTOR signaling pathways. Anat Rec 303(7):1935–1949. https://doi.org/10.1002/ar.24292. (Hoboken)

    Article  CAS  Google Scholar 

  27. Handan BA, De Moura CFG, Cardoso CM, Santamarina AB, Pisani LP, Ribeiro DA (2020) Protective effect of grape and apple juices against cadmium intoxication in the kidney of rats. Drug Res 70(11):503–511. https://doi.org/10.1055/a-1221-4733

    Article  CAS  Google Scholar 

  28. Ali FEM, Sayed AM, El-Bahrawy AH, Omar ZMM, Hassanein EHM (2021) Targeting KEAP1/Nrf2, AKT, and PPAR-γ signals as a potential protective mechanism of diosmin against gentamicin-induced nephrotoxicity. Life Sci 275:119349. https://doi.org/10.1016/j.lfs.2021.119349

    Article  CAS  PubMed  Google Scholar 

  29. Suvarna KS, Layton C, Bancroft JD (2018) Bancroft’s theory and practice of histological techniques E-Book. Elsevier health sciences

  30. Van Weemen B, Schuurs A (1971) Immunoassay using antigen—enzyme conjugates. FEBS Lett 15(3):232–236

    Article  PubMed  Google Scholar 

  31. Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr B Anal Technol Biomed Life Sci 851(1–2):51–70. https://doi.org/10.1016/j.jchromb.2006.07.054

    Article  CAS  Google Scholar 

  32. Krawisz JE, Sharon P, Stenson WF (1984) Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity. Assessment of inflammation in rat and hamster models. Gastroenterology 87(6):1344–50

    Article  CAS  PubMed  Google Scholar 

  33. Ramos-Vara JA (2005) Technical aspects of immunohistochemistry. Vet Pathol 42(4):405–426. https://doi.org/10.1354/vp.42-4-405

    Article  CAS  PubMed  Google Scholar 

  34. Ali FEM, Bakr AG, Abo-Youssef AM, Azouz AA, Hemeida RAM (2018) Targeting Keap-1/Nrf-2 pathway and cytoglobin as a potential protective mechanism of diosmin and pentoxifylline against cholestatic liver cirrhosis. Life Sci 207:50–60. https://doi.org/10.1016/j.lfs.2018.05.048

    Article  CAS  PubMed  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  36. Renugadevi J, Prabu SMJE, Pathology T (2010) Quercetin protects against oxidative stress-related renal dysfunction by cadmium in rats 62(5):471-81

  37. Elkhadragy MF, Al-Olayan EM, Al-Amiery AA, Abdel Moneim AE (2018) Protective effects of Fragaria ananassa extract against cadmium chloride-induced acute renal toxicity in rats. Biol Trace Elem Res 181(2):378–87

    Article  CAS  PubMed  Google Scholar 

  38. Orr SE, Bridges CC (2017) Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci 18(5). https://doi.org/10.3390/ijms18051039

  39. Prozialeck W, Vaidya V, Liu J, Waalkes M, Edwards J, Lamar P et al (2007) Kidney injury molecule-1 is an early biomarker of cadmium nephrotoxicity 72(8):985–93

  40. Kayama F, Yoshida T, Elwell MR, Luster MI (1995) Cadmium-induced renal damage and proinflammatory cytokines: possible role of IL-6 in tubular epithelial cell regeneration. Toxicol Appl Pharmacol 134(1):26–34. https://doi.org/10.1006/taap.1995.1165

    Article  CAS  PubMed  Google Scholar 

  41. Forghani R, Kim HJ, Wojtkiewicz GR, Bure L, Wu Y, Hayase M et al (2015) Myeloperoxidase propagates damage and is a potential therapeutic target for subacute stroke 35(3):485-93

  42. Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A et al (2002) Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296(5577):2391–2394. https://doi.org/10.1126/science.1106830. (New York, NY)

    Article  CAS  PubMed  Google Scholar 

  43. Chen S, Chen H, Du Q, Shen J (2020) Targeting myeloperoxidase (MPO) mediated oxidative stress and inflammation for reducing brain ischemia injury: potential application of natural compounds 11. https://doi.org/10.3389/fphys.2020.00433

  44. Jafari M, Abolmaali SS, Tamaddon AM, Zomorodian K, Shahriarirad B (2021) Nanotechnology approaches for delivery and targeting of Amphotericin B in fungal and parasitic diseases. Nanomedicine 16(10):857–877

    Article  CAS  PubMed  Google Scholar 

  45. Sayed AM, Abdel-Fattah MM, Arab HH, Mohamed WR, Hassanein EHM (2022) Targeting inflammation and redox aberrations by perindopril attenuates methotrexate-induced intestinal injury in rats: Role of TLR4/NF-κB and c-Fos/c-Jun pro-inflammatory pathways and PPAR-γ/SIRT1 cytoprotective signals. Chem Biol Interact 351:109732. https://doi.org/10.1016/j.cbi.2021.109732

    Article  CAS  PubMed  Google Scholar 

  46. Hassanein EHM, Ali FEM, Kozman MR, Abd El-Ghafar OAM (2021) Umbelliferone attenuates gentamicin-induced renal toxicity by suppression of TLR-4/NF-κB-p65/NLRP-3 and JAK1/STAT-3 signaling pathways. Environ Sci Pollut Res Int 28(9):11558–11571. https://doi.org/10.1007/s11356-020-11416-5

    Article  CAS  PubMed  Google Scholar 

  47. Hassanein EHM, Sayed AM, El-Ghafar O, Omar ZMM, Rashwan EK, Mohammedsaleh ZM et al (2023) Apocynin abrogates methotrexate-induced nephrotoxicity: role of TLR4/NF-κB-p65/p38-MAPK, IL-6/STAT-3, PPAR-γ, and SIRT1/FOXO3 signaling pathways. Arch Pharm Res 46(4):339–359. https://doi.org/10.1007/s12272-023-01436-3

    Article  CAS  PubMed  Google Scholar 

  48. Hu X, Li J, Fu M, Zhao X, Wang W (2021) The JAK/STAT signaling pathway: from bench to clinic. Sig Transduct Target Ther 6(1):402. https://doi.org/10.1038/s41392-021-00791-1

    Article  Google Scholar 

  49. Alruhaimi RS, Hassanein EHM, Abd El-Aziz MK, Siddiq Abduh M, Bin-Ammar A, Kamel EM et al (2023) The melatonin receptor agonist agomelatine protects against acute pancreatitis induced by cadmium by attenuating inflammation and oxidative stress and modulating Nrf2/HO-1 pathway. Int Immunopharmacol 124(Pt A):110833. https://doi.org/10.1016/j.intimp.2023.110833

    Article  CAS  PubMed  Google Scholar 

  50. Alruhaimi RS, Hassanein EHM, Bin-Jumah MN, Mahmoud AM (2023) Cadmium cardiotoxicity is associated with oxidative stress and upregulated TLR-4/NF-kB pathway in rats; protective role of agomelatine. Food Chem Toxicol 180:114055. https://doi.org/10.1016/j.fct.2023.114055

    Article  CAS  PubMed  Google Scholar 

  51. Bakr AG, Hassanein EHM, Ali FEM, El-Shoura EAM (2022) Combined apocynin and carvedilol protect against cadmium-induced testicular damage via modulation of inflammatory response and redox-sensitive pathways. Life Sci 311(Pt A):121152. https://doi.org/10.1016/j.lfs.2022.121152

    Article  CAS  PubMed  Google Scholar 

  52. Galandrin S, Denis C, Boularan C, Marie J, M’Kadmi C, Pilette C et al (2016) Cardioprotective angiotensin-(1–7) peptide acts as a natural-biased ligand at the angiotensin II type 1 receptor 68(6):1365–74. https://doi.org/10.1161/HYPERTENSIONAHA.116.08118

  53. Ohishi M, Yamamoto K, Rakugi H (2013) Angiotensin (1–7) and other angiotensin peptides. Curr Pharm Des 19(17):3060–3064. https://doi.org/10.2174/1381612811319170013

    Article  CAS  PubMed  Google Scholar 

  54. Raisova M, Hossini AM, Eberle J, Riebeling C, Orfanos CE, Geilen CC et al (2001) The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Investig Dermatol 117(2):333–340. https://doi.org/10.1046/j.0022-202x.2001.01409.x

    Article  CAS  PubMed  Google Scholar 

  55. Yang B, Johnson TS, Thomas GL, Watson PF, Wagner B, Furness PN et al (2002) A shift in the Bax/Bcl-2 balance may activate caspase-3 and modulate apoptosis in experimental glomerulonephritis. Kidney Int 62(4):1301–1313. https://doi.org/10.1111/j.1523-1755.2002.kid587.x

    Article  CAS  PubMed  Google Scholar 

  56. Song X-F, Ren H, Andreasen A, Thomsen JS, Zhai X-Y (2012) Expression of Bcl-2 and Bax in mouse renal tubules during kidney development. PLoS ONE 7(2):e32771. https://doi.org/10.1371/journal.pone.0032771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fujiwara Y, Lee JY, Tokumoto M, Satoh M (2012) Cadmium renal toxicity via apoptotic pathways. Biol Pharm Bull 35(11):1892–1897. https://doi.org/10.1248/bpb.b212014

    Article  CAS  PubMed  Google Scholar 

  58. Salama ME, Adel M, Helal G, El-Shafey M (2019) Role of oxidative stress, apoptosis and autophagy in cadmium-induced renal injury in rats: renoprotective effect of ghrelin. J Bull Egypt Soc Physiol Sci 39(2):271–85. https://doi.org/10.21608/besps.2019.14414.1025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZMM: statistical analysis, resources, reviewing, and editing. EH: conceptualization, data curation, writing-original draft preparation, formal analysis. FA: conceptualization, methodology, statistical analysis, data curation, reviewing, and editing. HSA: conceptualization, resources, reviewing, and editing. NSA: resources, data curation, reviewing, and editing. AMA: conceptualization, methodology, writing—original draft preparation, reviewing, and editing.

Corresponding author

Correspondence to Fares E. M. Ali.

Ethics declarations

Ethical Approval and Consent to Participate

This experimental procedure was carried out following the approval of the Faculty of Pharmacy Ethics Committee of Al-Azhar University, Assiut Branch, Egypt (Approval number: ZA-AS/PH/17/C/2022).

Consent for Publication

The authors declared that the final version of the manuscript has been reviewed, approved, and consented for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammedsaleh, Z.M., Hassanein, E.H.M., Ali, F.E.M. et al. Perindopril Dampens Cd-induced Nephrotoxicity by Suppressing Inflammatory Burden, Ang II/Ang 1–7, and Apoptosis Signaling Pathways. Biol Trace Elem Res 202, 3193–3203 (2024). https://doi.org/10.1007/s12011-023-03907-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03907-6

Keywords

Navigation