Skip to main content

Advertisement

Log in

D-Limonene Alleviates Oxidative Stress Injury of the Testis Induced by Arsenic in Rat

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Long-term exposure to arsenic can lead to testicular damage and lower sperm quality in males, which is mediated by increased arsenic-induced oxidative stress and other damage mechanisms. D-Limonene, which is rich in oranges, lemons, oranges, grapes and other natural fruits, can relieve doxorubicin (DOX)-induced kidney injury and CCL4-induced cardiac toxicity by inhibiting oxidative stress and inflammatory response. The antioxidant and anti-inflammatory properties of D-limonene motivate us to further explore whether it can reduce arsenic-induced testicular injury. To verify this scientific hypothesis, testicular pathology, testicular oxidative stress levels and sperm motility were determined after intervention with D-limonene in rats chronically exposed to arsenic. As expected, long-term arsenic exposure caused testicular tissue structure disturbances, increased levels of oxidative stress, and decreased sperm activation, all of which were significantly inhibited due to treatment with D-limonene. In conclusion, our data reveal a previously unproven beneficial effect of D-limonene, namely that D-limonene can inhibit arsenic-induced testicular injury, and also provide theoretical and experimental basis for the application of D-limonene in the treatment of arsenic-induced testicular injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Rahaman MS, Rahman MM, Mise N et al (2021) Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut (Barking, Essex : 1987) 289:117940. https://doi.org/10.1016/j.envpol.2021.117940

    Article  CAS  Google Scholar 

  2. Nurchi VM, Djordjevic AB, Crisponi G et al (2020) Arsenic toxicity: molecular targets and therapeutic agents. Biomolecules 10. https://doi.org/10.3390/biom10020235

  3. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396. https://doi.org/10.1136/pmj.79.933.391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sinha D, Prasad P (2020) Health effects inflicted by chronic low-level arsenic contamination in groundwater: a global public health challenge. J Appl Toxicol : JAT 40:87–131. https://doi.org/10.1002/jat.3823

    Article  CAS  PubMed  Google Scholar 

  5. Huang Q, Luo L, Alamdar A et al (2016) Integrated proteomics and metabolomics analysis of rat testis: mechanism of arsenic-induced male reproductive toxicity. Scientific reports 6:32518. https://doi.org/10.1038/srep32518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Das J, Ghosh J, Manna P et al (2009) Taurine protects rat testes against NaAsO(2)-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways. Toxicol Lett 187:201–210. https://doi.org/10.1016/j.toxlet.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  7. Pant N, Murthy RC, Srivastava SP (2004) Male reproductive toxicity of sodium arsenite in mice. Hum Exp Toxicol 23:399–403. https://doi.org/10.1191/0960327104ht467oa

    Article  CAS  PubMed  Google Scholar 

  8. Reddy PS, Rani GP, Sainath SB et al (2011) Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. J Trace Elem Med Biol 25:247–253. https://doi.org/10.1016/j.jtemb.2011.08.145

    Article  CAS  PubMed  Google Scholar 

  9. Zeng Q, Yi H, Huang L et al (2019) Long-term arsenite exposure induces testicular toxicity by redox imbalance, G2/M cell arrest and apoptosis in mice. Toxicology 411:122–132. https://doi.org/10.1016/j.tox.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  10. Nurchi VM, Cappai R, Chand K et al (2019) New strong extrafunctionalizable tris(3,4-HP) and bis(3,4-HP) metal sequestering agents: synthesis, solution and in vivo metal chelation. Dalton Trans (Cambridge, England : 2003) 48:16167–16183. https://doi.org/10.1039/c9dt02905b

    Article  CAS  Google Scholar 

  11. Flora SJ, Bhadauria S, Kannan GM et al (2007) Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28:333–347

    CAS  PubMed  Google Scholar 

  12. Rao CV, Pal S, Mohammed A et al (2017) Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo. Oncotarget 8:57605–57621. https://doi.org/10.18632/oncotarget.17745

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bjorklund G, Mutter J, Aaseth J (2017) Metal chelators and neurotoxicity: lead, mercury, and arsenic. Arch Toxicol 91:3787–3797. https://doi.org/10.1007/s00204-017-2100-0

    Article  CAS  PubMed  Google Scholar 

  14. Yadav A, Flora SJ (2016) Nano drug delivery systems: a new paradigm for treating metal toxicity. Expert Opin Drug Deliv 13:831–841. https://doi.org/10.1517/17425247.2016.1160890

    Article  CAS  PubMed  Google Scholar 

  15. Hu Y, Li J, Lou B et al (2020) The role of reactive oxygen species in arsenic toxicity. Biomolecules 10. https://doi.org/10.3390/biom10020240

  16. Yaribeygi H, Sathyapalan T, Atkin SL et al (2020) Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev 2020:8609213. https://doi.org/10.1155/2020/8609213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khosravi M, Poursaleh A, Ghasempour G et al (2019) The effects of oxidative stress on the development of atherosclerosis. Biol Chem 400:711–732. https://doi.org/10.1515/hsz-2018-0397

    Article  CAS  PubMed  Google Scholar 

  18. Qamar AY, Naveed MI, Raza S et al (2023) Role of antioxidants in fertility preservation of sperm - a narrative review. Anim Biosci 36:385–403. https://doi.org/10.5713/ab.22.0325

    Article  CAS  PubMed  Google Scholar 

  19. Scarlata E, O'Flaherty C (2020) Antioxidant enzymes and male fertility: lessons from knockout models. Antioxid Redox Signal 32:569–580. https://doi.org/10.1089/ars.2019.7985

    Article  CAS  PubMed  Google Scholar 

  20. Dutta S, Majzoub A, Agarwal A (2019) Oxidative stress and sperm function: a systematic review on evaluation and management. Arab J Urol 17:87–97. https://doi.org/10.1080/2090598x.2019.1599624

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen SJ, Allam JP, Duan YG et al (2013) Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet 288:191–199. https://doi.org/10.1007/s00404-013-2801-4

    Article  CAS  PubMed  Google Scholar 

  22. Agarwal A, Virk G, Ong C et al (2014) Effect of oxidative stress on male reproduction. World J Men’s Health 32:1–17. https://doi.org/10.5534/wjmh.2014.32.1.1

    Article  Google Scholar 

  23. Bisht S, Faiq M, Tolahunase M et al (2017) Oxidative stress and male infertility. Nat Rev Urol 14:470–485. https://doi.org/10.1038/nrurol.2017.69

    Article  CAS  PubMed  Google Scholar 

  24. Tazari M, Baghshani H, Moosavi Z (2018) Effect of betaine versus arsenite-induced alterations of testicular oxidative stress and circulating androgenic indices in rats. Andrologia 50:e13091. https://doi.org/10.1111/and.13091

    Article  CAS  PubMed  Google Scholar 

  25. Ince S, Avdatek F, Demirel HH et al (2016) Ameliorative effect of polydatin on oxidative stress-mediated testicular damage by chronic arsenic exposure in rats. Andrologia 48:518–524. https://doi.org/10.1111/and.12472

    Article  CAS  PubMed  Google Scholar 

  26. Dehdashti Moghadam M, Baghshani H, Ghodrati Azadi H et al (2021) Ameliorative effects of caffeic acid against arsenic-induced testicular injury in mice. Biol Trace Elem Res 199:3772–3780. https://doi.org/10.1007/s12011-020-02518-9

    Article  CAS  PubMed  Google Scholar 

  27. González-Mas MC, Rambla JL, López-Gresa MP et al (2019) Volatile compounds in citrus essential oils: a comprehensive review. Front Plant Sci 10:12. https://doi.org/10.3389/fpls.2019.00012

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sharifi-Rad J, Sureda A, Tenore GC et al (2017) Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules (Basel, Switzerland) 22. https://doi.org/10.3390/molecules22010070

  29. Anandakumar P, Kamaraj S, Vanitha MK (2021) D-limonene: a multifunctional compound with potent therapeutic effects. J Food Biochem 45:e13566. https://doi.org/10.1111/jfbc.13566

    Article  CAS  PubMed  Google Scholar 

  30. Rehman MU, Tahir M, Khan AQ et al (2014) D-limonene suppresses doxorubicin-induced oxidative stress and inflammation via repression of COX-2, iNOS, and NFκB in kidneys of Wistar rats. Exp Biol Med (Maywood, NJ) 239:465–476. https://doi.org/10.1177/1535370213520112

    Article  CAS  Google Scholar 

  31. Cellular Longevity OMA (2022) Retracted: protective effect of D-limonene against oxidative stress-induced cell damage in human lens epithelial cells via the p38 pathway. Oxid Med Cell Longev 2022:9862315. https://doi.org/10.1155/2022/9862315

    Article  PubMed  Google Scholar 

  32. AlSaffar RM, Rashid S, Ahmad SB et al (2022) D-limonene (5 (one-methyl-four-[1-methylethenyl]) cyclohexane) diminishes CCl(4)-induced cardiac toxicity by alleviating oxidative stress, inflammatory and cardiac markers. Redox Rep : Commun Free Radic Res 27:92–99. https://doi.org/10.1080/13510002.2022.2062947

    Article  CAS  Google Scholar 

  33. Concessao PL, Bairy KL, Raghavendra AP (2023) Ameliorating effect of Mucuna pruriens seed extract on sodium arsenite-induced testicular toxicity and hepato-renal histopathology in rats. Vet World 16:82–93. https://doi.org/10.14202/vetworld.2023.82-93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan X, Chen X, Tian X et al (2021) Co-exposure to inorganic arsenic and fluoride prominently disrupts gut microbiota equilibrium and induces adverse cardiovascular effects in offspring rats. Sci Total Environ 767:144924. https://doi.org/10.1016/j.scitotenv.2020.144924

    Article  CAS  PubMed  Google Scholar 

  35. Na L, Xiumei Z et al (2020) Research into the intervention effect of folic acid on arsenic-induced heart abnormalities in fetal rats during the periconception period. BMC Cardiovasc Disord 20:139. https://doi.org/10.1186/s12872-020-01418-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang Q, Xi G, Alamdar A et al (2017) Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats. Environ Pollut (Barking, Essex : 1987) 229:210–218. https://doi.org/10.1016/j.envpol.2017.05.077

    Article  CAS  Google Scholar 

  37. Mehta M, Hundal SS (2016) Effect of sodium arsenite on reproductive organs of female Wistar rats. Arch Environ Occup Health 71:16–25. https://doi.org/10.1080/19338244.2014.927346

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira M, Matos RC, Oliveira H et al (2012) Impairment of mice spermatogenesis by sodium arsenite. Hum Exp Toxicol 31:290–302. https://doi.org/10.1177/0960327111405862

    Article  CAS  PubMed  Google Scholar 

  39. Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 30:2–13. https://doi.org/10.1016/j.semcdb.2014.02.012

    Article  CAS  PubMed  Google Scholar 

  40. Lin Y, Mahan K, Lathrop WF et al (1994) A hyaluronidase activity of the sperm plasma membrane protein PH-20 enables sperm to penetrate the cumulus cell layer surrounding the egg. J Cell Biol 125:1157–1163. https://doi.org/10.1083/jcb.125.5.1157

    Article  CAS  PubMed  Google Scholar 

  41. Hirayama T, Hasegawa T, Hiroi M (1989) The measurement of hyaluronidase activity in human spermatozoa by substrate slide assay and its clinical application. Fertil Steril 51:330–334. https://doi.org/10.1016/s0015-0282(16)60499-5

    Article  CAS  PubMed  Google Scholar 

  42. Zubair M, Ahmad M, Qureshi ZI (2017) Review on arsenic-induced toxicity in male reproductive system and its amelioration. Andrologia 49. https://doi.org/10.1111/and.12791

  43. Jomova K, Jenisova Z, Feszterova M et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol : JAT 31:95–107. https://doi.org/10.1002/jat.1649

    Article  CAS  PubMed  Google Scholar 

  44. Chang SI, Jin B, Youn P et al (2007) Arsenic-induced toxicity and the protective role of ascorbic acid in mouse testis. Toxicol Appl Pharmacol 218:196–203. https://doi.org/10.1016/j.taap.2006.11.009

    Article  CAS  PubMed  Google Scholar 

  45. White CC, Viernes H, Krejsa CM et al (2003) Fluorescence-based microtiter plate assay for glutamate-cysteine ligase activity. Anal Biochem 318:175–180. https://doi.org/10.1016/s0003-2697(03)00143-x

    Article  CAS  PubMed  Google Scholar 

  46. Zhao P, Guo Y, Zhang W et al (2017) Neurotoxicity induced by arsenic in gallus gallus: regulation of oxidative stress and heat shock protein response. Chemosphere 166:238–245. https://doi.org/10.1016/j.chemosphere.2016.09.060

    Article  CAS  PubMed  Google Scholar 

  47. Wirth JJ, Mijal RS (2010) Adverse effects of low level heavy metal exposure on male reproductive function. Syst Biol Reprod Med 56:147–167. https://doi.org/10.3109/19396360903582216

    Article  CAS  PubMed  Google Scholar 

  48. Fouad AA, Al-Sultan AI, Yacoubi MT (2011) Coenzyme Q10 counteracts testicular injury induced by sodium arsenite in rats. Eur J Pharmacol 655:91–98. https://doi.org/10.1016/j.ejphar.2010.12.045

    Article  CAS  PubMed  Google Scholar 

  49. Jana K, Jana S, Samanta PK (2006) Effects of chronic exposure to sodium arsenite on hypothalamo-pituitary-testicular activities in adult rats: possible an estrogenic mode of action. Reprod Biol Endocrinol : RB & E 4:9. https://doi.org/10.1186/1477-7827-4-9

    Article  CAS  Google Scholar 

  50. Kumar D, Panda SK, Jena GR et al (2023) Alternations of fertility parameters by graded dose of inorganic arsenic in adult male white Pekin ducks. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03580-9

  51. Jahan S, Iftikhar N, Ullah H et al (2015) Alleviative effect of quercetin on rat testis against arsenic: a histological and biochemical study. Syst Biol Reprod Med 61:89–95. https://doi.org/10.3109/19396368.2014.998350

    Article  CAS  PubMed  Google Scholar 

  52. El-Khadragy MF, Al-Megrin WA, Alomar S et al (2021) Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxido-inflammatory stress and apoptotic responses. Chem Biol Interact 333:109333. https://doi.org/10.1016/j.cbi.2020.109333

    Article  CAS  PubMed  Google Scholar 

  53. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304–1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wajda A, Łapczuk J, Grabowska M et al (2016) Nuclear factor E2-related factor-2 (Nrf2) expression and regulation in male reproductive tract. Pharmacol Rep : PR 68:101–108. https://doi.org/10.1016/j.pharep.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  55. Shaha C, Tripathi R, Mishra DP (2010) Male germ cell apoptosis: regulation and biology. Phil Trans R Soc Lond Series B, Biol Sci 365:1501–1515. https://doi.org/10.1098/rstb.2009.0124

    Article  CAS  Google Scholar 

  56. Rojas-García PP, Recabarren MP, Sarabia L et al (2010) Prenatal testosterone excess alters Sertoli and germ cell number and testicular FSH receptor expression in rams. Am J Physiol Endocrinol Metab 299:E998–e1005. https://doi.org/10.1152/ajpendo.00032.2010

    Article  CAS  PubMed  Google Scholar 

  57. Zhao R, Yang B, Wang L et al (2013) Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism. Oxid Med Cell Longev 2013:412576. https://doi.org/10.1155/2013/412576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li NC, Wei XX, Hu YL et al (2018) Aerobic exercise blocks interleukin-6 levels and germ cell apoptosis in obese rats. Andrologia 50. https://doi.org/10.1111/and.12880

  59. Naujokas MF, Anderson B, Ahsan H et al (2013) The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environ Health Perspect 121:295–302. https://doi.org/10.1289/ehp.1205875

    Article  PubMed  PubMed Central  Google Scholar 

  60. Davey JC, Bodwell JE, Gosse JA et al (2007) Arsenic as an endocrine disruptor: effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture. Toxicol Sci 98:75–86. https://doi.org/10.1093/toxsci/kfm013

    Article  CAS  PubMed  Google Scholar 

  61. Zargari F, Rahaman MS, KazemPour R et al (2022) Arsenic, oxidative stress and reproductive system. J Xenobiot 12:214–222. https://doi.org/10.3390/jox12030016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Center of Basic Medical School of Guizhou Medical University for providing experimental equipment.

Funding

This work was supported by the Guizhou Provincial Education Department Youth Science and Technology Talent Growth Project [grant No. Qianjiaohe KY, (2021) 150] and the Science and Technology Project of Guizhou Province [grant No. Qiankehejichu-ZK (2021) Yiban 374].

Author information

Authors and Affiliations

Authors

Contributions

Qi Wang and Yanping Yang: conceived and designed the experiment. Yan Hong, Jing Han, Zhe Yang, Nanmin Huang, and Binwei Xu: performed the experiments and data analysis. Qi Wang and Yanping Yang: prepared figures and the manuscript. All authors contributed to the article and approved the submitted version. Qi Wang and Yanping Yang confirmed the authenticity of the raw data.

Corresponding author

Correspondence to Qi Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Hong, Y., Han, J. et al. D-Limonene Alleviates Oxidative Stress Injury of the Testis Induced by Arsenic in Rat. Biol Trace Elem Res 202, 2776–2785 (2024). https://doi.org/10.1007/s12011-023-03881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03881-z

Keywords

Navigation