Skip to main content

Advertisement

Log in

Proteomics Sequencing Reveals the Role of TGF-β Signaling Pathway in the Peripheral Blood of Offspring Rats Exposed to Fluoride

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The underlying mechanism of fluorosis has not been fully elucidated. The purpose of this study was to explore the mechanism of fluorosis induced by sodium fluoride (NaF) using proteomics. Six offspring rats exposed to fluoride without dental fluorosis were defined as group A, 8 offspring rats without fluoride exposure were defined as control group B, and 6 offspring rats exposed to fluoride with dental fluorosis were defined as group C. Total proteins from the peripheral blood were extracted and then separated using liquid chromatography–tandem mass spectrometry. The identified criteria for differentially expressed proteins were fold change > 1.2 or < 0.83 and P < 0.05. Gene Ontology function annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the oeCloud tool. The 177 upregulated and 22 downregulated proteins were identified in the A + C vs. B group. KEGG pathway enrichment analysis revealed that transforming growth factor-β (TGF-β) signaling pathway significantly enriched. PPI network constructed using Cytoscape confirmed RhoA may play a crucial role. The KEGG results of genes associated with fluoride and genes associated with both fluoride and inflammation in the GeneCards database also showed that TGF-β signaling pathway was significantly enriched. The immunofluorescence in HPA database showed that the main expression sites of RhoA are plasma membrane and cytosol, while the main expression site of Fbn1 is the Golgi apparatus. In conclusion, long-term NaF intake may cause inflammatory response in the peripheral blood of rats by upregulating TGF-β signaling pathway, in which RhoA may play a key role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

During the present study, all the generated datasets and analyzed data are available from the corresponding author upon reasonable request.

References

  1. Chouhan S, Flora SJ (2010) Arsenic and fluoride: two major ground water pollutants. Indian J Exp Biol 48(7):666–678

    CAS  PubMed  Google Scholar 

  2. Singh G, Kumari B, Sinam G et al (2018) Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective- a review. Environ Pollut 239:95–108

    Article  CAS  PubMed  Google Scholar 

  3. Zhou BH, Wei SS, Jia LS et al (2020) Drp1/Mff signaling pathway is involved in fluoride-induced abnormal fission of hepatocyte mitochondria in mice. Sci Total Environ 725:138192

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Daiwile AP, Sivanesan S, Tarale P et al (2018) Role of fluoride induced histone trimethylation in development of skeletal fluorosis. Environ Toxicol Pharmacol 57:159–165

    Article  CAS  PubMed  Google Scholar 

  5. Kurdi MS (2016) Chronic fluorosis: the disease and its anaesthetic implications. Indian J Anaesth 60(3):157–162

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei W, Pang S, Sun D (2019) The pathogenesis of endemic fluorosis: research progress in the last 5 years. J Cell Mol Med 23(4):2333–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daiwile AP, Tarale P, Sivanesan S et al (2019) Role of fluoride induced epigenetic alterations in the development of skeletal fluorosis. Ecotoxicol Environ Saf 169:410–417

    Article  CAS  PubMed  Google Scholar 

  8. Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 8(5):a021873

  9. David CJ, Massagué J (2018) Publisher correction: contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 19(7):479

    Article  CAS  PubMed  Google Scholar 

  10. David CJ, Massagué J (2018) Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol 19(7):419–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Derynck R, Budi EH (2019) Specificity, versatility, and control of TGF-β family signaling. Sci Signal 12(570):eaav5183

  12. Flavell RA, Sanjabi S, Wrzesinski SH et al (2010) The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 10(8):554–567

    Article  CAS  PubMed  Google Scholar 

  13. Sanjabi S, Oh SA, Li MO (2017) Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol 9(6):a022236

  14. Batlle E, Massagué J (2019) Transforming growth factor-β signaling in immunity and cancer. Immunity 50(4):924–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tzavlaki K, Moustakas A (2020) TGF-β signaling. Biomolecules 10(3):487

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Kuang P, Liu H et al (2019) Sodium fluoride (NaF) induces inflammatory responses via activating MAPKs/NF-κB signaling pathway and reducing anti-inflammatory cytokine expression in the mouse liver. Biol Trace Elem Res 189(1):157–171

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Li Y, Gao Y et al (2018) TGF-β1 acts as mediator in fluoride-induced autophagy in the mouse osteoblast cells. Food Chem Toxicol 115:26–33

    Article  CAS  PubMed  Google Scholar 

  18. Thadikkaran L, Siegenthaler MA, Crettaz D et al (2005) Recent advances in blood-related proteomics. Proteomics 5(12):3019–3034

    Article  CAS  PubMed  Google Scholar 

  19. Wei Y, Zeng B, Zhang H et al (2016) iTRAQ-based proteomics analysis of serum proteins in Wistar rats treated with sodium fluoride: insight into the potential mechanism and candidate biomarkers of fluorosis. Int J Mol Sci 17(10):1644

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu B, Fu X, Du Y et al (2023) In silico analysis of ferroptosis-related genes and its implication in drug prediction against fluorosis. Int J Mol Sci 24(4):4221

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Subramanian A, Narayan R, Corsello SM et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171(6):1437–52.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jiang Y, Chen L, Chao Z et al (2022) Ferroptosis related genes in ischemic and idiopathic cardiomyopathy: screening for potential pharmacological targets. Front Cell Dev Biol 10:817819

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sharma D, Singh A, Verma K et al (2017) Fluoride: a review of pre-clinical and clinical studies. Environ Toxicol Pharmacol 56:297–313

    Article  CAS  PubMed  Google Scholar 

  24. Jiang N, Guo F, Sun B et al (2020) Different effects of fluoride exposure on the three major bone cell types. Biol Trace Elem Res 193(1):226–233

    Article  CAS  PubMed  Google Scholar 

  25. Matsuda SS, Silva TL, Buzalaf MA et al (2014) Differential effects of fluoride during osteoblasts mineralization in C57BL/6J and C3H/HeJ inbred strains of mice. Biol Trace Elem Res 161(1):123–129

    Article  CAS  PubMed  Google Scholar 

  26. Sun MM, Beier F (2014) Chondrocyte hypertrophy in skeletal development, growth, and disease. Birth Defects Res C Embryo Today 102(1):74–82

    Article  CAS  PubMed  Google Scholar 

  27. Bros M, Haas K, Moll L et al (2019) RhoA as a key regulator of innate and adaptive immunity. Cells 8(7):733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian Y, Han YX, Guo HF et al (2018) Upregulated microRNA-485 suppresses apoptosis of renal tubular epithelial cells in mice with lupus nephritis via regulating the TGF-β-MAPK signaling pathway by inhibiting RhoA expression. J Cell Biochem 119(11):9154–9167

    Article  CAS  PubMed  Google Scholar 

  29. Xu H, Liu P, Liang L et al (2006) RhoA-mediated, tumor necrosis factor alpha-induced activation of NF-kappaB in rheumatoid synoviocytes: inhibitory effect of simvastatin. Arthritis Rheum 54(11):3441–3451

    Article  CAS  PubMed  Google Scholar 

  30. Deng Z, Jia Y, Liu H et al (2019) RhoA/ROCK pathway: implication in osteoarthritis and therapeutic targets. Am J Transl Res 11(9):5324–5331

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen L, Jia P, Liu Y et al (2023) Fluoride exposure disrupts the cytoskeletal arrangement and ATP synthesis of HT-22 cell by activating the RhoA/ROCK signaling pathway. Ecotoxicol Environ Saf 254:114718

    Article  CAS  PubMed  Google Scholar 

  32. Shusterman K, Gibson CW, Li Y et al (2014) Wnt-RhoA signaling pathways in fluoride-treated ameloblast-lineage cells. Cells Tissues Organs 199(2–3):159–168

    Article  CAS  PubMed  Google Scholar 

  33. Yang E, Jeon SB, Baek I et al (2010) Fluoride induces vascular contraction through activation of RhoA/Rho kinase pathway in isolated rat aortas. Environ Toxicol Pharmacol 29(3):290–296

    Article  CAS  PubMed  Google Scholar 

  34. Tiedemann K, Boraschi-Diaz I, Rajakumar I et al (2013) Fibrillin-1 directly regulates osteoclast formation and function by a dual mechanism. J Cell Sci 126(Pt 18):4187–4194

    Article  CAS  PubMed  Google Scholar 

  35. Yu H, Jiang N, Yu X et al (2018) The role of TGFβ receptor 1-smad3 signaling in regulating the osteoclastic mode affected by fluoride. Toxicology 393:73–82

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Jiang N, Yu H et al (2019) Requirement of TGFβ signaling for effect of fluoride on osteoblastic differentiation. Biol Trace Elem Res 187(2):492–498

    Article  CAS  PubMed  Google Scholar 

  37. Chen G, Deng C, Li YP (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8(2):272–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan X, Dong N, Hao X et al (2019) Comparative transcriptomics reveals the role of the Toll-like receptor signaling pathway in fluoride-induced cardiotoxicity. J Agric Food Chem 67(17):5033–5042

    Article  CAS  PubMed  Google Scholar 

  39. Tang H, Wang M, Li G et al (2023) Association between dental fluorosis prevalence and inflammation levels in school-aged children with low-to-moderate fluoride exposure. Environ Pollut 320:120995

    Article  CAS  PubMed  Google Scholar 

  40. Ding XJ, Zhang ZY, Jin J et al (2020) Salidroside can target both P4HB-mediated inflammation and melanogenesis of the skin. Theranostics 10(24):11110–11126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao S, Cheng QC, Hu YG et al (2021) LncRNA AK148321 alleviates neuroinflammation in LPS-stimulated BV2 microglial cell through regulating microRNA-1199-5p/HSPA5 axis. Life Sci 266:118863

    Article  CAS  PubMed  Google Scholar 

  42. Yang JQ, Kalim KW, Li Y et al (2019) Rational targeting Cdc42 restrains Th2 cell differentiation and prevents allergic airway inflammation. Clin Exp Allergy 49(1):92–107

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Wang Z, Li J, et al (2023) Sodium butyrate ameliorates fluorosis-induced neurotoxicity by regulating hippocampal glycolysis in vivo. Biol Trace Elem Res (Online ahead of print)

  44. Angwa LM, Jiang Y, Pei J et al (2022) Antioxidant phytochemicals for the prevention of fluoride-induced oxidative stress and apoptosis: a review. Biol Trace Elem Res 200(3):1418–1441

    Article  CAS  PubMed  Google Scholar 

  45. Song C, Shi D, Chang K et al (2021) Sodium fluoride activates the extrinsic apoptosis via regulating NOX4/ROS-mediated p53/DR5 signaling pathway in lung cells both in vitro and in vivo. Free Radic Biol Med 169:137–148

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Li A, Mehmood K et al (2021) Long-term exposure to the fluoride blocks the development of chondrocytes in the ducks: the molecular mechanism of fluoride regulating autophagy and apoptosis. Ecotoxicol Environ Saf 217:112225

    Article  CAS  PubMed  Google Scholar 

  47. Bergandi L, Aina V, Garetto S et al (2010) Fluoride-containing bioactive glasses inhibit pentose phosphate oxidative pathway and glucose 6-phosphate dehydrogenase activity in human osteoblasts. Chem Biol Interact 183(3):405–415

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Scientific Foundation of China (82003400, 81972981) and the Science and Technology Program of Henan Province (232102311079, 212102310622).

Author information

Authors and Affiliations

Authors

Contributions

Fang-fang Yu: methodology, writing, review and editing, and funding acquisition. Shui-yuan Yu, Lei-zhen Duan, and Shuo Yang: data curation, visualization, and writing, original draft. Xiang-bo Hou, Yu-hui Du, Ming-hui Gao, Juan Zuo, and Lei Sun: investigation, visualization, and data curation. Xiao-li Fu, Hui Huang, Zhi-yuan Li, Guo-yu Zhou, Dao-li Jia, Rui-qin Chen, and Yue Ba: supervision, resources, and writing, review and editing.

Corresponding author

Correspondence to Yue Ba.

Ethics declarations

Ethics Approval

All animal studies were reviewed and approved by the animal ethics research committee of Zhengzhou University.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7143 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Ff., Yu, Sy., Duan, Lz. et al. Proteomics Sequencing Reveals the Role of TGF-β Signaling Pathway in the Peripheral Blood of Offspring Rats Exposed to Fluoride. Biol Trace Elem Res 202, 2100–2110 (2024). https://doi.org/10.1007/s12011-023-03805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03805-x

Keywords

Navigation