Skip to main content
Log in

ZnT 9 Involvement in Estradiol-Modulated Zinc Homeostasis of the Human Follicular Microenvironment

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Female subfertility has been a growing concern for reproductive health. Assisted reproductive technologies make pregnancy possible, but the outcome rate is still suboptimal. Zinc is an essential factor for fertility and development. Zinc levels in follicular fluids were measured by electrochemical method, and we found that zinc in the follicular fluids was related to high-quality embryo rate (R = 0.39, p = 0.01). Basal estradiol levels and estradiol levels on the day of HCG injection were negatively correlated with zinc concentrations in the follicular fluid (R =  − 0.53, p < 0.001; R =  − 0.32, p < 0.05), and estradiol promoted ZnT 9 protein expression in cumulus granulosa cells in vitro and in vivo. When the zinc level was at 3.63–3.85 μg/mL, follicular fluid samples had the highest SOD activity. Therefore, zinc played an important role in improving oocyte development by increasing antioxidant capacity. Our results suggested that estradiol affected zinc homeostasis in follicles by controlling the expression of ZnT 9, which in turn influenced the potential of oocytes to develop into good-quality embryos. This study to provide tangible improvements to patient outcomes will make it a focus of both scientific and translational efforts in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Singh AK et al (2013) Markers of oxidative stress in follicular fluid of women with endometriosis and tubal infertility undergoing IVF. Reprod Toxicol 42:116–124

    Article  CAS  PubMed  Google Scholar 

  2. Andreini C et al (2006) Zinc through the three domains of life. J Proteome Res 5(11):3173–3178

    Article  CAS  PubMed  Google Scholar 

  3. Lee SR (2018) Critical role of zinc as either an antioxidant or a prooxidant in cellular systems. Oxid Med Cell Longev 2018:9156285

    Article  PubMed  PubMed Central  Google Scholar 

  4. Olechnowicz J et al (2018) Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci 68(1):19–31

    Article  CAS  PubMed  Google Scholar 

  5. Garner TB et al (2021) Role of zinc in female reproduction. Biol Reprod 104(5):976–994

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bedwal RS, Bahuguna A (1994) Zinc, copper and selenium in reproduction. Experientia 50(7):626–640

    Article  CAS  PubMed  Google Scholar 

  7. Kukic I, Kelleher SL, Kiselyov K (2014) Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. J Cell Sci 127(Pt 14):3094–3103

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson ED et al (2012) Zinc hyperaccumulation in squirrelfish (Holocentrus adscenscionis) and its role in embryo viability. PLoS One 7(10):e46127

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pascua AM et al (2020) Reproductive hormones influence zinc homeostasis in the bovine cumulus-oocyte complex: impact on intracellular zinc concentration and transporters gene expression. Theriogenology 146:48–57

    Article  CAS  PubMed  Google Scholar 

  10. Jeong J, Eide DJ (2013) The SLC39 family of zinc transporters. Mol Aspects Med 34(2–3):612–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang L, Tepaamorndech S (2013) The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med 34(2–3):548–560

    Article  CAS  PubMed  Google Scholar 

  12. Medicine C.A.o.R. et al (2022) Expert consensus on human embryo morphological assessment: cleavage-stage embryos and blastocysts grading criteria. Chin J Reprod Contracept 42(12):8

    Google Scholar 

  13. Zakerkish F et al (2020) Proteomic analysis of follicular fluid during human ovulation. Acta Obstet Gynecol Scand 99(7):917–924

    Article  CAS  PubMed  Google Scholar 

  14. Dumesic DA et al (2015) Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril 103(2):303–316

    Article  PubMed  Google Scholar 

  15. Nasiadek M et al (2020) The role of zinc in selected female reproductive system disorders. Nutrients 12(8):2464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Menezo Y et al (2011) Zinc concentrations in serum and follicular fluid during ovarian stimulation and expression of Zn2+ transporters in human oocytes and cumulus cells. Reprod Biomed Online 22(6):647–652

    Article  CAS  PubMed  Google Scholar 

  17. Schmalbrock LJ et al (2021) Pronounced trace element variation in follicular fluids of subfertile women undergoing assisted reproduction. Nutrients 13(11):4134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ozkaya MO et al (2011) Effects of multivitamin/mineral supplementation on trace element levels in serum and follicular fluid of women undergoing in vitro fertilization (IVF). Biol Trace Elem Res 139(1):1–9

    Article  MathSciNet  PubMed  Google Scholar 

  19. Anchordoquy JM et al (2014) The importance of having zinc during in vitro maturation of cattle cumulus-oocyte complex: role of cumulus cells. Reprod Domest Anim 49(5):865–874

    Article  CAS  PubMed  Google Scholar 

  20. Picco SJ et al (2010) Effect of increasing zinc sulphate concentration during in vitro maturation of bovine oocytes. Theriogenology 74(7):1141–1148

    Article  CAS  PubMed  Google Scholar 

  21. Janati S et al (2021) Follicular fluid zinc level and oocyte maturity and embryo quality in women with polycystic ovary syndrome. Int J Fertil Steril 15(3):197–201

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Maret W (2011) Redox biochemistry of mammalian metallothioneins. J Biol Inorg Chem 16(7):1079–1086

    Article  CAS  PubMed  Google Scholar 

  23. Günther V, Lindert U, Schaffner W (2012) The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 1823(9):1416–1425

    Article  PubMed  Google Scholar 

  24. Lisle RS et al (2013) Oocyte-cumulus cell interactions regulate free intracellular zinc in mouse oocytes. Reproduction 145(4):381–390

    Article  CAS  PubMed  Google Scholar 

  25. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281(34):24085–24089

    Article  CAS  PubMed  Google Scholar 

  26. el-Tanani MK, Green CD (1995) Oestrogen-induced genes, pLIV-1 and pS2, respond divergently to other steroid hormones in MCF-7 cells. Mol Cell Endocrinol 111(1):75–81

    Article  CAS  PubMed  Google Scholar 

  27. Manning DL et al (1988) Effects of oestrogen on the expression of a 4.4 kb mRNA in the ZR-75–1 human breast cancer cell line. Mol Cell Endocrinol 59(3):205–12

    Article  CAS  PubMed  Google Scholar 

  28. Taylor KM et al (2007) The emerging role of the LIV-1 subfamily of zinc transporters in breast cancer. Mol Med 13(7–8):396–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song MK et al (1992) Prostaglandin interacts with steroid sex hormones in the regulation of intestinal zinc transport. Comp Biochem Physiol Comp Physiol 101(3):477–481

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Beltramini M et al (2004) Effects of steroid hormones on the Zn, Cu and MTI/II levels in the mouse brain. Brain Res 1013(1):134–141

    Article  CAS  PubMed  Google Scholar 

  31. Thomas P, Converse A, Berg HA (2018) ZIP9, a novel membrane androgen receptor and zinc transporter protein. Gen Comp Endocrinol 257:130–136

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X et al (2018) A novel role for zinc transporter 8 in the facilitation of zinc accumulation and regulation of testosterone synthesis in Leydig cells of human and mouse testicles. Metabolism 88:40–50

    Article  CAS  PubMed  Google Scholar 

  33. Csikos A et al (2021) Zinc transporter 9 (SLC30A9) expression is decreased in the vaginal tissues of menopausal women. Biol Trace Elem Res 199(11):4011–4019

    Article  CAS  PubMed  Google Scholar 

  34. Sim DL, Chow VT (1999) The novel human HUEL (C4orf1) gene maps to chromosome 4p12-p13 and encodes a nuclear protein containing the nuclear receptor interaction motif. Genomics 59(2):224–233

    Article  CAS  PubMed  Google Scholar 

  35. Kowalczyk A et al (2021) Evolutionary rate covariation identifies SLC30A9 (ZnT9) as a mitochondrial zinc transporter. Biochem J 478(17):3205–3220

    Article  CAS  PubMed  Google Scholar 

  36. Rensvold JW et al (2022) Defining mitochondrial protein functions through deep multiomic profiling. Nature 606(7913):382–388

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Perez Y et al (2017) SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain 140(4):928–939

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ma T et al (2022) A pair of transporters controls mitochondrial Zn(2+) levels to maintain mitochondrial homeostasis. Protein Cell 13(3):180–202

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  39. En A et al (2022) A mutation in SLC30A9, a zinc transporter, causes an increased sensitivity to oxidative stress in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 634:175–181

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology (Shijiazhuang, China), and all the patients who participated in the study.

Funding

This work was supported by Hebei Medical Science Research Project (20190144), Government clinical medical talent training program (ZF2023175, ZF2023176).

Author information

Authors and Affiliations

Authors

Contributions

Shusong Wang contributed to the study design. The first draft of the manuscript was written by Hui Lu and Xueying Wang. Hui Lu and Xueying Wang participated in the experiments, prepared the figures, and conducted data analysis. Material preparation was performed by Xiujia Zhang, Wenbo Yu, and Xiaoli Guo. Clinical data collection was performed by Ruhua Wang, Congcong Xie, and Jing Ma. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shusong Wang.

Ethics declarations

Approval was obtained from the ethics committee of Hebei Institute of Reproductive Health Science and Technology. The procedures used in this study adhere to the tenets of the Declaration of Helsinki. Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hui Lu and Xueying Wang contributed equally to this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Wang, X., Zhang, X. et al. ZnT 9 Involvement in Estradiol-Modulated Zinc Homeostasis of the Human Follicular Microenvironment. Biol Trace Elem Res 202, 1901–1909 (2024). https://doi.org/10.1007/s12011-023-03804-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03804-y

Keywords

Navigation