Skip to main content
Log in

Hair Heavy Metals and Food Consumption in Residents of Chengdu: Factors, Food Contribution, and Health Risk Assessment

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Heavy metal pollution is one of the most pressing issues threatening food security and human health. This study assesses heavy metal (chromium, cadmium, copper, zinc, nickel, and lead) exposure via hair metal concentrations in Chengdu residents, reflecting metal intake from food consumption. From June 2020 to February 2021, a sampling survey was conducted on residents’ hair (n=182) and food (n=301) in six main urban areas of Chengdu. The concentrations of heavy metals in hair and food were analyzed by inductively coupled plasma mass spectrometry, and the results showed that the residents of Chengdu City had high hair concentrations of Cd (0.17±0.03 mg kg−1) and Zn (293±21.3 mg kg−1). Gender significantly affected the hair Cr, Zn, and Ni concentrations. Based on the survey results obtained from Chengdu City residents, the habits and diet structure are assessed for the influence of six heavy metals in the hair of the residents. Adolescents’ (13–18 years old) hair had significantly higher Pb concentrations than adults (19–59 years old). The concentration of Ni in hair was affected by perming and dyeing habits. For dietary exposure, cereals and meat were the main contributors to the residents’ daily intake of heavy metals. The bioaccessibility of Cr, Cd, Cu, Zn, Ni, and Pb in food was 2.45–74.67%, 10.6–78.7%, 13.4–82.5%, 8.89–89.2%, 7.70–85.1%, and 15.4–86.2%, respectively. In health risk evaluation based on the bioaccessible fraction of six heavy metals, the hazard quotient of each heavy metal in food was less than 1, indicating no potential non-carcinogenic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article. No data was used for the research described in the article.

References

  1. Chengdu (2022) Chengdu Statistical Yearbook. NBS survey office in Chengdu, Chengdu Municipal Buerau of Statistics

    Google Scholar 

  2. GaWC (2020) List of world cities. Globalization and World Cities

    Google Scholar 

  3. Ahmed SF, Kumar PS, Rozbu MR, Chowdhury AT, Nuzhat S, Rafa N, Mahlia TMI, Ong HC, Mofijur M (2022) Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil. Environ Technol Innov 25:102114

    Article  CAS  Google Scholar 

  4. Wu YF, Li X, Yu L, Wang TQ, Wang JN, Liu TT (2022) Review of soil heavy metal pollution in China: spatial distribution, primary sources, and remediation alternatives. Resour Conserv Recy 181:106261

    Article  CAS  Google Scholar 

  5. GB3838 (2002) Environmental quality standard for surface water. China National Standards Management Department, Beijing

  6. Bing H, Xiang Z, Zhu H, Wu Y (2018b) Spatiotemporal variation and exposure risk to human health of potential toxic elements in suburban vegetable soils of a megacity, SW China, 2012-2016. Environ Sci Pollut Res Int 25:4223–4237

    Article  CAS  PubMed  Google Scholar 

  7. Li D, Liu SL, Yang Y, Guo L, Lyu BY, Yang RJ, Zhang XX, Wang YL, Yang F, Chen QB (2022a) Metal-algae interaction contributes to the water environment heterogeneity in an urbanized river. Ecol Indic 139:108875

    Article  CAS  Google Scholar 

  8. Bing H, Xiang Z, Zhu H, Wu Y (2018a) Spatiotemporal variation and exposure risk to human health of potential toxic elements in suburban vegetable soils of a megacity, SW China, 2012-2016. Environ Sci Pollut Res 25:4223–4237

    Article  CAS  Google Scholar 

  9. Wang G, Zhang S, Xiao L, Zhong Q, Li L, Xu G, Deng O, Pu Y (2017a) Heavy metals in soils from a typical industrial area in Sichuan, China: spatial distribution, source identification, and ecological risk assessment. Environ Sci Pollut Res Int 24:16618–16630

    Article  CAS  PubMed  Google Scholar 

  10. Xu XX, Huo QL, Dong YY, Zhang SR, Yang ZB, Xian JR, Yang YX, Cheng Z (2019) Bioaccumulation and health risk assessment of trace metals in fish from freshwater polyculture ponds in Chengdu, China. Environ Sci Pollut Res Int 26:33466–33477

    Article  CAS  PubMed  Google Scholar 

  11. Li HH, Yang ZB, Xu XX, Zhu XM, Xian JR, Yang YX, Cheng Z (2022c) Polycyclic aromatic hydrocarbons in street dust from different functional areas in Chengdu, China: seasonal variation and health risk assessment. Environ Geochem Health 44:1161–1173

    Article  CAS  PubMed  Google Scholar 

  12. Li HH, Yang ZB, Xu XX, Yang S, Cheng Z (2022b) Pollution characteristics and health risk assessment of phthalate esters in household dust in Chengdu, China. Hum Ecol Risk Assess 28:958–971

    Article  CAS  Google Scholar 

  13. Li HH, Chen LJ, Yu L, Guo ZB, Shan CQ, Lin JQ, Gu YG, Yang ZB, Yang YX, Shao JR, Zhu XM, Cheng Z (2017) Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci Total Environ 586:1076–1084

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Cheng Z, Chen LJ, Li HH, Lin JQ, Yang ZB, Yang YX, Xu XX, Xian JR, Shao JR, Zhu XM (2018b) Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Sci Total Environ 619-620:621–629

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Khoshakhlagh AH, Chuang K-J, Kumar P (2023a) Health risk assessment of exposure to ambient formaldehyde in carpet manufacturing industries. Environ Sci Pollut R 30:16386–16397

    Article  CAS  Google Scholar 

  16. Liang G, Pan L, Liu X (2017) Assessment of typical heavy metals in human hair of different age groups and foodstuffs in Beijing, China. Int J Environ Res Public Health 14:914

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khoshakhlagh AH, Mohammadzadeh M, Manafi SS, Yousefian F, Gruszecka-Kosowska A (2023b) Inhalational exposure to formaldehyde, carcinogenic, and non-carcinogenic risk assessment: a systematic review. Environ Pollut 331:121854

    Article  CAS  PubMed  Google Scholar 

  18. Qin YY, Leung CK, Lin CK, Wong MH (2015) The associations between metals/metalloids concentrations in blood plasma of Hong Kong residents and their seafood diet, smoking habit, body mass index and age. Environ Sci Pollut Res Int 22:13204–13211

    Article  CAS  PubMed  Google Scholar 

  19. Xie Q, Wang Y, Li S, Zhang C, Tian X, Cheng N, Zhang Y, Wang D (2021) Total mercury and methylmercury in human hair and food: implications for the exposure and health risk to residents in the Three Gorges Reservoir Region China. Environ Pollut 282:117041

    Article  CAS  PubMed  Google Scholar 

  20. Gil F, Hernandez AF, Marquez C, Femia P, Olmedo P, Lopez-Guarnido O, Pla A (2011) Biomonitorization of cadmium, chromium, manganese, nickel and lead in whole blood, urine, axillary hair and saliva in an occupationally exposed population. Sci Total Environ 409:1172–1180

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Huang M, Chen X, Shao D, Zhao Y, Wang W, Wong MH (2014) Risk assessment of arsenic and other metals via atmospheric particles, and effects of atmospheric exposure and other demographic factors on their accumulations in human scalp hair in urban area of Guangzhou, China. Ecotoxicol Environ Saf 102:84–92

    Article  CAS  PubMed  Google Scholar 

  22. Yang J, Xie Q, Wang Y, Wang J, Zhang Y, Zhang C, Wang D (2021) Exposure of the residents around the Three Gorges Reservoir, China to chromium, lead and arsenic and their health risk via food consumption. Ecotoxicol Environ Saf 228:112997

    Article  CAS  PubMed  Google Scholar 

  23. Tamburo E, Varrica D, Dongarrà G (2016) Gender as a key factor in trace metal and metalloid content of human scalp hair. A multi-site study. Sci Total Environ 573:996–1002

    Article  CAS  ADS  Google Scholar 

  24. Fang F, Wang Y, Zhu Z, Yao Y, Lin Y, Wang J (2019) Distribution characteristics and influencing factors of heavy metals in scalp hair of Huainan urban residents. Environ Monit Assess 191:443

    Article  PubMed  Google Scholar 

  25. Zhu Y, Wang Y, Meng F, Li L, Wu S, Mei X, Li H, Zhang G, Wu D (2018) Distribution of metal and metalloid elements in human scalp hair in Taiyuan, China. Ecotoxicol Environ Saf 148:538–545

    Article  CAS  PubMed  Google Scholar 

  26. Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: health risks, fate, mechanisms, and management. Environ Int 125:365–385

    Article  CAS  PubMed  Google Scholar 

  27. Hu J, Wu F, Wu S, Cao Z, Lin X, Wong MH (2013) Bioaccessibility, dietary exposure and human risk assessment of heavy metals from market vegetables in Hong Kong revealed with an in vitro gastrointestinal model. Chemosphere 91:455–461

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Oomen AG, Hack A, Minekus M, Zeijdner E, Cornelis C, Schoeters G, Verstraete W, Van de Wiele T, Wragg J, Rompelberg CJ, Sips AJ, Van Wijnen JH (2002) Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol 36:3326–3334

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Omar NA, Praveena SM, Aris AZ, Hashim Z (2015) Health risk assessment using in vitro digestion model in assessing bioavailability of heavy metal in rice: a preliminary study. Food Chem 188:46–50

    Article  CAS  PubMed  Google Scholar 

  30. Sharafi K, Nodehi RN, Mahvi AH, Pirsaheb M, Nazmara S, Mahmoudi B, Yunesian M (2019) Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model - comparison of calculated human health risk from raw, cooked and digested rice. Food Chem 299:125126

    Article  CAS  PubMed  Google Scholar 

  31. Yu Y, Liu L, Chen X, Xiang M, Li Z, Liu Y, Zeng Y, Han Y, Yu Z (2021) Brominated flame retardants and heavy metals in common aquatic products from the pearl river delta, south china: bioaccessibility assessment and human health implications. J Hazard Mater 403:124036

    Article  CAS  PubMed  Google Scholar 

  32. Zhuang P, Sun S, Su F, Li F, Zhou X, Mao P, Li Y, Li Z, Zhang C (2018) Dietary strategies to reduce the oral bioaccessibility of cadmium and arsenic in rice. Environ Sci Pollut Res Int 25:33353–33360

    Article  CAS  PubMed  Google Scholar 

  33. Wang HS, Zhao YG, Man YB, Wong CKC, Wong MH (2011) Oral bioaccessibility and human risk assessment of organochlorine pesticides (OCPs) via fish consumption, using an in vitro gastrointestinal model. Food Chem 127:1673–1679

    Article  CAS  Google Scholar 

  34. Cheng Z, Nie XP, Wang HS, Wong MH (2013) Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption. Environ Int 57-58:75–80

    Article  CAS  PubMed  Google Scholar 

  35. USEPA (1989) Risk assessment guidance for superfund, Vol 1. EPA/540/1-89/002. Office of Emergency and Remedial Response. United State Environmental Protection Agency (USEPA), Washington, DC

  36. USEPA (2019) Exposure factors handbook. (Final edition), EPA/600/R-09/052F. United State Environmental Protection Agency (USEPA), Washington, DC

  37. USEPA (2021) Integrated Risk Information System (IRIS) summary table. United State Environmental Protection Agency (USEPA), Wachington, DC

    Google Scholar 

  38. Qin Y, Xu C, Li W, Jian B, Wu B, Chen M, Sun H, Hong H (2021) Metal/metalloid levels in hair of Shenzhen residents and the associated influencing factors. Ecotoxicol Environ Saf 220:112375

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Yu X, Geng M, Wang Z, Wang Q, Zeng X (2017b) Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China. Enviro Sci Pollut Res Int 24:13741–13748

    Article  CAS  Google Scholar 

  40. Zhao B, Zhao J, Zhou S, Wu X, Xu X, Yang R, Yuan Z (2023) Selenium and toxic metals in human hair of the Dashan Region, China: concentrations, sources, and antagonism effect. Ecotoxicol Environ Saf 250:114479

    Article  CAS  PubMed  Google Scholar 

  41. Deng SW, Yu J, Wang YT, Xie SQ, Ran ZX, Wei W (2019) Distribution, transfer, and time-dependent variation of Cd in soil-rice system: a case study in the Chengdu plain Southwest China. Soil Till Res 195:104367

    Article  Google Scholar 

  42. Li Q, Li A, Yu X, Dai T, Peng Y, Yuan D, Zhao B, Tao Q, Wang C, Li B, Gao X, Li Y, Wu D, Xu Q (2020) Soil acidification of the soil profile across Chengdu Plain of China from the 1980s to 2010s. Sci Total Environ 698:134320

    Article  CAS  PubMed  ADS  Google Scholar 

  43. GB2762 (2017) National food safety standards: maximum levels of contaminants in foods. China National Standards Management Department, Beijing

  44. Li Y, Zhang Z, Liu H, Zhou H, Fan Z, Lin M, Wu D, Xia B (2016) Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. Environ Geochem Health 38:353–362

    Article  CAS  PubMed  Google Scholar 

  45. Cheng Z, Chen LJ, Li HH, Lin JQ, Yang ZB, Yang YX, Xu XX, Xian JR, Shao JR, Zhu XM (2018a) Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Sci Total Environ 619:621–629

    Article  PubMed  ADS  Google Scholar 

  46. Yang X, Lin R, Zhang W, Xu Y, Wei X, Zhuo C, Qin J, Li H (2019) Comparison of Cd subcellular distribution and Cd detoxification between low/high Cd-accumulative rice cultivars and sea rice. Ecotoxicol Environ Saf 185:109698

    Article  CAS  PubMed  Google Scholar 

  47. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A (2020) Nickel: human health and environmental toxicology. Int J Environ Res Public Health 17:679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Michalak I, Mikulewicz M, Chojnacka K, Wolowiec P, Saeid A, Gorecki H (2012) Exposure to nickel by hair mineral analysis. Environ Toxicol Pharm 34:727–734

    Article  CAS  Google Scholar 

  49. Skalnaya MG, Tinkov AA, Demidov VA, Serebryansky EP, Nikonorov AA, Skalny AV (2016) Age-related differences in hair trace elements: a cross-sectional study in Orenburg, Russia. Ann Hum Biol 43:438–444

    Article  PubMed  Google Scholar 

  50. Acosta-Saavedra LC, Moreno ME, Rodriguez-Kessler T, Luna A, Arias-Salvatierra D, Gomez R, Calderon-Aranda ES (2011) Environmental exposure to lead and mercury in Mexican children: a real health problem. Toxicol Mech Methods 21:656–666

    Article  CAS  PubMed  Google Scholar 

  51. He MJ, Li Q, Wang DX, Zhao JY, Yang T (2017) Bioaccumulation and correlation of heavy metals in human hairs from urban and rural areas of Chongqing. Huan Jing Ke Xue 38:1697–1703

    PubMed  Google Scholar 

  52. Tang Y, Dyer JM, Deb-Choudhury S, Li Q (2016) Trace metal ions in hair from frequent hair dyers in China and the associated effects on photo-oxidative damage. J Photochem Photobiol B 156:35–40

    Article  CAS  PubMed  Google Scholar 

  53. Wei ZL, Rui YK, Shen L (2008) Effects of hair dyeing on the heavy metals content in hair Guang pu xue yu guang pu fen xi =. Guang Pu 28:2187–2188

    CAS  PubMed  Google Scholar 

  54. QB/T1978 (2004) Hair coloring preparetion. National Development and Reform Commission, Beijing, China

    Google Scholar 

  55. Izah SC, Inyang IR, Angaye TCN, Okowa IP (2016) A review of heavy metal concentration and potential health implications of beverages consumed in Nigeria. Toxics 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen H, Yang X, Wang P, Wang Z, Li M, Zhao FJ (2018) Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China. Sci Total Environ 639:271–277

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Zhang H, Feng X, Larssen T, Qiu G, Vogt RD (2010) In inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environ Health Perspect 118:1183–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zheng S, Wang Q, Yuan Y, Sun W (2020) Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem 316:126213

    Article  CAS  PubMed  Google Scholar 

  59. Nejad JG, Lee BH, Kim BW, Ohh SJ, Sung KI (2016) Effects of chromium methionine supplementation on blood metabolites and fatty acid profile of beef during late fattening period in Holstein steers. Asian-Australas J Anim Sci 29:378–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu QH, Wu J, Wang LL, Yang G, Zhang XH (2015) Effect of biochar on heavy metal speciation of paddy soil. Water Air Soil Poll 226:429

    Article  ADS  Google Scholar 

  61. Li Q, Zhang S, Dai F, Gao X, Zhang X, Wang C, Yuan D, Li K (2014) Contents and sources of cadmium in farmland soils of Chengdu Plain China. J Nucl Agr Sci 23(2):308–315

    CAS  Google Scholar 

  62. GB15618 (1995) Environmental quality standards for soil. China National Standards Management Department, Beijing, China

    Google Scholar 

  63. Liu Z, Wang QQ, Huang SY, Kong LX, Zhuang Z, Wang Q, Li HF, Wan YN (2022b) The risks of sulfur addition on cadmium accumulation in paddy rice under different water-management conditions. J Environ Sci (China) 118:101–111

    Article  CAS  PubMed  Google Scholar 

  64. Uraguchi S, Fujiwara T (2012) Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice (N Y) 5:5

    Article  PubMed  Google Scholar 

  65. Zhao FJ, Wang P (2020) Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 446:1–21

    Article  CAS  Google Scholar 

  66. WS/T578.3 (2017) Reference intake of dietary nutrients for Chinese residents. National Health Commission of the People’s Republic of China

    Google Scholar 

  67. Islam MS, Proshad R, Haque MA, Hoque MF, Hossin MS, Sarker MNI (2020) Assessment of heavy metals in foods around the industrial areas: health hazard inference in Bangladesh. Geocarto Int 35:280–295

    Article  ADS  Google Scholar 

  68. Sun S, Zhang H, Luo Y, Guo C, Ma X, Fan J, Chen J, Geng N (2022) Occurrence, accumulation, and health risks of heavy metals in Chinese market baskets. Sci Total Environ 829:154597

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Yeganeh M, Afyuni M, Khoshgoftarmanesh AH, Soffianian AR, Schulin R (2012) Health risks of metals in soil, water, and major food crops in Hamedan Province Iran. Hum Ecol Risk Assess 18:547–568

    Article  CAS  Google Scholar 

  70. Cabrera-Vique C, Bouzas PR (2009) Chromium and manganese levels in convenience and fast foods: in vitro study of the dialyzable fraction. Food Chem 117:757–763

    Article  CAS  Google Scholar 

  71. Menezes EA, Oliveira AF, Franca CJ, Souza GB, Nogueira ARA (2018) Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein in beef, pork and chicken after thermal processing. Food Chem 240:75–83

    Article  CAS  PubMed  Google Scholar 

  72. Liu P, Xiao W, Wang K, Yang Z, Wang L (2022a) Bioaccessibility of Cd and its correlation with divalent mineral nutrients in locally grown rice from two provinces in China. Biol Trace Elem Res 200:1408–1417

    Article  CAS  PubMed  Google Scholar 

  73. Chanpiwat P, Hensawang S, Suwatvitayakorn P, Ponsin M (2019) Risk assessment of bioaccessible arsenic and cadmium exposure through rice consumption in local residents of the Mae Tao Sub-district, Northwestern Thailand. Environ Geochem Health 41:343–356

    Article  CAS  PubMed  Google Scholar 

  74. Xu FF, Song J, Li YQ, Lai YF, Lin J, Pan JL, Chi HQ, Wang Y, Li ZY, Zhang GQ, Cai ZF, Liang XX, Ma AD, Tan CT, Wu WL, Yang XF (2021) Bioaccessibility and bioavailability adjusted dietary exposure of cadmium for local residents from a high-level environmental cadmium region. J Hazard Mater 420:126550

    Article  CAS  PubMed  Google Scholar 

  75. Luo J, Meng J, Ye Y, Wang Y, Bai L (2018) Population health risk via dietary exposure to trace elements (Cu, Zn, Pb, Cd, Hg, and As) in Qiqihar, Northeastern China. Environ Geochem Health 40:217–227

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support was provided by the Natural Science Foundation of Sichuan Province, China (2022NSFSC0237), National Natural Science Foundation of China (No. 21507095), and Dean’s Research Fund of the Faculty of Liberal Arts and Social Sciences, the Education University of Hong Kong, Hong Kong SAR, China (DRF/ICSP-3).

Author information

Authors and Affiliations

Authors

Contributions

Hong-Xin Zeng: writing—original draft. Ming-Hung Wong: review and editing. Yu-Bon Man: methodology, review and editing, funding acquisition. Zhang Cheng: conceptualization, supervision, writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Zhang Cheng.

Ethics declarations

Ethics Approval and Consent to Participate

The manuscript did not contain any reporting studies involving human data. The study has obtained consent from each participant and approval from local ethics institution.

Consent for Publication

The manuscript does not contain any individual personal data.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1813 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, HX., Man, Y.B., Wong, M.H. et al. Hair Heavy Metals and Food Consumption in Residents of Chengdu: Factors, Food Contribution, and Health Risk Assessment. Biol Trace Elem Res 202, 1503–1516 (2024). https://doi.org/10.1007/s12011-023-03785-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03785-y

Keywords

Navigation