Skip to main content

Advertisement

Log in

Improved Biocompatibility and Angiogenesis of the Bone Titanium Scaffold through ERK1/2 Signaling Mediated by an Attached Strontium Element

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The promotion of early osseointegration is crucial for the success of biomedical titanium implants. Physical and chemical modifications to the material surface can significantly compensate for the lack of biocompatibility and early osseointegration of the implant. In this study, we implanted strontium onto titanium plates and analyzed the effect of strontium-doped materials on angiogenesis and biocompatibility in the human bone structure. Our findings demonstrated that strontium-loaded titanium sheet materials effectively promote human umbilical vein endothelial cell (HUVEC) biocompatibility and vascular differentiation ability, as evidenced by proliferation-apoptosis assays, RT-qPCR for vascular neogenesis markers, ELISA for vascular endothelial growth factor (VEGF) levels, and nitric oxide (NO) analysis. Mechanism studies based on RNAseq and Western blotting analysis revealed that strontium can promote titanium material biocompatibility with HUVEC cells and vascular neovascularization ability by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Meanwhile, blocking the ERK1/2 signaling pathway could reverse the promotional effect of vascular formation. Overall, we have successfully fabricated a multifunctional biocompatible bone implant with better histocompatibility and angiogenesis compared to uncoated implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the finding of this study are available from the corresponding author upon reasonable request.

References

  1. Huang P et al (2004) Surface modification of titanium implant by microarc oxidation and hydrothermal treatment. J Biomed Mater Res B Appl Biomater 70(2):187–190. https://doi.org/10.1002/jbm.b.30009

    Article  PubMed  CAS  Google Scholar 

  2. Spriano S et al (2018) A critical review of multifunctional titanium surfaces: new frontiers for improving osseointegration and host response, avoiding bacteria contamination. Acta Biomater 79:1–22. https://doi.org/10.1016/j.actbio.2018.08.013

    Article  PubMed  CAS  Google Scholar 

  3. Andersen OZ et al (2013) Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 34(24):5883–5890. https://doi.org/10.1016/j.biomaterials.2013.04.031

    Article  PubMed  CAS  Google Scholar 

  4. Sun Y-S et al (2015) Nanoporous surface topography enhances bone cell differentiation on Ti–6Al–7Nb alloy in bone implant applications. J Alloy Compd 643:S124–S132. https://doi.org/10.1016/j.jallcom.2015.01.019

    Article  CAS  Google Scholar 

  5. Loi F et al (2016) Inflammation, fracture and bone repair. Bone 86:119–130. https://doi.org/10.1016/j.bone.2016.02.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Di Maggio N, Banfi A (2022) The osteo-angiogenic signaling crosstalk for bone regeneration: harmony out of complexity. Curr Opin Biotechnol 76:102750. https://doi.org/10.1016/j.copbio.2022.102750

    Article  PubMed  CAS  Google Scholar 

  7. Diomede F et al (2020) Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci 21(9):3242. https://doi.org/10.3390/ijms21093242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Geng Z et al (2022) Optimizing the strontium content to achieve an ideal osseointegration through balancing apatite-forming ability and osteogenic activity. Biomater Adv 133:112647. https://doi.org/10.1016/j.msec.2022.112647

    Article  PubMed  CAS  Google Scholar 

  9. Geng Z et al (2018) Nanosized strontium substituted hydroxyapatite prepared from egg shell for enhanced biological properties. J Biomater Appl 32(7):896–905. https://doi.org/10.1177/0885328217748124

    Article  PubMed  CAS  Google Scholar 

  10. Geng Z et al (2021) A novel snail-inspired bionic design of titanium with strontium-substituted hydroxyapatite coating for promoting osseointegration. J Mater Sci Technol 79:35–45. https://doi.org/10.1016/j.jmst.2020.11.041

    Article  CAS  Google Scholar 

  11. Huang D et al (2020) Strontium-substituted sub-micron bioactive glasses inhibit ostoclastogenesis through suppression of RANKL-induced signaling pathway. Regen Biomater 7(3):303–311. https://doi.org/10.1093/rb/rbaa004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Saidak Z, Marie PJ (2012) Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther 136(2):216–226. https://doi.org/10.1016/j.pharmthera.2012.07.009

    Article  PubMed  CAS  Google Scholar 

  13. Gu Z et al (2013) Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts. Mater Sci Eng C Mater Biol Appl 33(1):274–281. https://doi.org/10.1016/j.msec.2012.08.040

    Article  PubMed  CAS  Google Scholar 

  14. Weng L et al (2017) Binary doping of strontium and copper enhancing osteogenesis and angiogenesis of bioactive glass nanofibers while suppressing osteoclast activity. ACS Appl Mater Interf 9(29):24484–24496. https://doi.org/10.1021/acsami.7b06521

    Article  CAS  Google Scholar 

  15. Kuo YJ et al (2022) Angiogenesis, osseointegration, and antibacterial applications of polyelectrolyte multilayer coatings incorporated with silver/strontium containing mesoporous bioactive glass on 316L stainless steel. Front Bioeng Biotechnol 10:818137. https://doi.org/10.3389/fbioe.2022.818137

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhu X et al (2019) Influence of strontium on vascular endothelial growth factor and fibroblast growth factor 2 expression in rat chondrocytes cultured in vitro. Biol Trace Elem Res 190(2):466–471. https://doi.org/10.1007/s12011-018-1564-y

    Article  PubMed  CAS  Google Scholar 

  17. Sun Y et al (2021) A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways. Materials Science and Engineering: C 131:112482. https://doi.org/10.1016/j.msec.2021.112482

    Article  PubMed  CAS  Google Scholar 

  18. Almubarak S et al (2016) Tissue engineering strategies for promoting vascularized bone regeneration. Bone 83:197–209. https://doi.org/10.1016/j.bone.2015.11.011

    Article  PubMed  CAS  Google Scholar 

  19. Filipowska J et al (2017) The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20(3):291–302. https://doi.org/10.1007/s10456-017-9541-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yang F et al (2023) Biodegradable magnesium incorporated microspheres enable immunomodulation and spatiotemporal drug release for the treatment of osteonecrosis of the femoral head. Composites Part B: Engineering 250:110430. https://doi.org/10.1016/j.compositesb.2022.110430

    Article  CAS  Google Scholar 

  21. Choudhary S et al (2007) Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: involvement of prostaglandins. J Bone Miner Res 22(7):1002–1010. https://doi.org/10.1359/jbmr.070321

    Article  PubMed  CAS  Google Scholar 

  22. Bonnelye E et al (2008) Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 42(1):129–138. https://doi.org/10.1016/j.bone.2007.08.043

    Article  PubMed  CAS  Google Scholar 

  23. Montagna G et al (2020) An in vivo comparison study between strontium nanoparticles and rhBMP2. Front Bioeng Biotechnol 8:499. https://doi.org/10.3389/fbioe.2020.00499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kołodziejska B, Stępień N, Kolmas J (2021) The influence of strontium on bone tissue metabolism and its application in osteoporosis treatment. Int J Mol Sci 22(12):6654. https://doi.org/10.3390/ijms22126564

    Article  CAS  Google Scholar 

  25. Barbeck M, et al. (2022) In vivo analysis of the immune response to strontium- and copper-doped bioglass. In Vivo 36(5): 2149–2165. https://doi.org/10.21873/invivo.12941

  26. Fotopoulou C et al (2022) Outcomes of gynecologic cancer surgery during the COVID-19 pandemic: an international, multicenter, prospective CovidSurg-Gynecologic Oncology Cancer study. Am J Obstet Gynecol 227(5):735.e1-735.e25. https://doi.org/10.1016/j.ajog.2022.06.052

    Article  PubMed  Google Scholar 

  27. Ha KJ, Kim N (2014) Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 21(4):233–241

    Article  Google Scholar 

  28. Zhang W et al (2018) Synergistic effect of strontium and silicon in strontium-substituted sub-micron bioactive glass for enhanced osteogenesis. Mater Sci Eng C Mater Biol Appl 89:245–255. https://doi.org/10.1016/j.msec.2018.04.012

    Article  PubMed  CAS  Google Scholar 

  29. Yuichiro T, Tomoko M, Yuji Y (2015) Functional diversity of fibroblast growth factors in bone formation. Int J Endocrinol 2015:729352

    Google Scholar 

  30. Saito M et al (2018) Platelet-derived TGF-β induces tissue factor expression via the smad3 pathway in osteosarcoma cells. J Bone Miner Res 33(11):2048–2058

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Hebei Province Youth Science Foundation Project (Grant numbers H2020109157).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jianjun Jiao, Bingkun Cheng, QingYong Chen, Jiahuan He, and Xueqiang Zhang. The first draft of the manuscript was written by Bingkun Cheng, Jiahuan He, Qingqing Cui, and Chao Ma. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianjun Jiao.

Ethics declarations

Ethics Approval

NA. There is no human or animal subject involved in the research.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, B., Chen, Q.Y., Zhang, X. et al. Improved Biocompatibility and Angiogenesis of the Bone Titanium Scaffold through ERK1/2 Signaling Mediated by an Attached Strontium Element. Biol Trace Elem Res 202, 1559–1567 (2024). https://doi.org/10.1007/s12011-023-03772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03772-3

Keywords

Navigation