Skip to main content
Log in

High Copper Intake Is Associated with Decreased Likelihood of Abdominal Aortic Calcification in Middle-Aged and Older US Adults

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of our study was primarily to investigate the relationship between dietary copper intake and abdominal aortic calcification (AAC) in US adults. We used data from the National Health and Nutrition Examination Survey (NHANES) 2013–2014 for our analysis. Multivariate linear regression analysis was used to explore the relationship between copper intake and AAC scores. We also used multivariate logistic regression analysis to explore the association between copper intake and the risk of AAC and severe AAC. We also examined whether there was a nonlinear relationship between copper intake and AAC scores and risk of AAC and severe AAC using restricted cubic splines (RCS) analysis. In addition, we also performed subgroup analysis and interaction tests. A total of 2897 participants were recruited in this study. The mean AAC score of the participants was 1.46 ± 0.11, and the prevalence of AAC and severe AAC among the participants was 28.53% and 7.68%, respectively. In the fully adjusted model, a negative association of copper intake with AAC scores (β =  − 0.16, 95%CI: − 0.49 ~ 0.17) and the risk of AAC (OR = 0.85, 95% CI: 0.61–1.19) and severe AAC (OR = 0.82, 95% CI: 0.49–1.38) was observed. Compared to participants in the lowest tertile of copper intake, participants in the highest tertile of copper intake had a 0.37-unit decrease in mean AAC score (β =  − 0.37, 95% CI: − 0.90–0.15) and a significant 38% and 22% decrease in risk of AAC (OR = 0.62, 95% CI: 0.41–0.95) and severe AAC (OR = 0.78, 95% CI: 0.34 − 1.77), respectively. The results of subgroup analyses and interaction tests suggested no significant differences in AAC scores and AAC risk between the different strata. In contrast, the risk of severe AAC was significantly dependent on the patients’ diabetes status. Increased copper intake was associated with decreased AAC scores and decreased likelihood of AAC and severe AAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Publicly available datasets were analyzed in this study. This data can be found here: https://www.cdc.gov/nchs/nhanes/index.htm.

References

  1. Demer LL, Tintut Y (2008) Vascular calcification: pathobiology of a multifaceted disease. Circulation 117(22):2938–2948

    Article  PubMed  PubMed Central  Google Scholar 

  2. Villa-Bellosta R (2021) Vascular calcification: key roles of phosphate and pyrophosphate. Int J Mol Sci 22(24):13536

  3. Yuan C, Ni L, Zhang C, Hu X, Wu X (2021) Vascular calcification: new insights into endothelial cells. Microvasc Res 134:104105

    Article  CAS  PubMed  Google Scholar 

  4. Yahagi K, Kolodgie FD, Lutter C, Mori H, Romero ME, Finn AV et al (2017) Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol 37(2):191–204

    Article  CAS  PubMed  Google Scholar 

  5. Górriz JL, Molina P, Cerverón MJ, Vila R, Bover J, Nieto J et al (2015) Vascular calcification in patients with nondialysis CKD over 3 years. Clin J Am Soc Nephrol 10(4):654–666

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chen J, Budoff MJ, Reilly MP, Yang W, Rosas SE, Rahman M et al (2017) Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol 2(6):635–643

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhou Y, Hellberg M, Kouidi E, Deligiannis A, Höglund P, Clyne N (2018) Relationships between abdominal aortic calcification, glomerular filtration rate, and cardiovascular risk factors in patients with non-dialysis dependent chronic kidney disease. Clin Nephrol 90(6):380–389

    Article  CAS  PubMed  Google Scholar 

  8. Kramer CK, Zinman B, Gross JL, Canani LH, Rodrigues TC, Azevedo MJ et al (2013) Coronary artery calcium score prediction of all cause mortality and cardiovascular events in people with type 2 diabetes: systematic review and meta-analysis. BMJ 346:f1654

    Article  PubMed  Google Scholar 

  9. Wang XR, Yuan L, Shi R, Li H, Wang DG, Wu YG (2021) Predictors of coronary artery calcification and its association with cardiovascular events in patients with chronic kidney disease. Ren Fail 43(1):1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martino F, Di Loreto P, Giacomini D, Kaushik M, Rodighiero MP, Crepaldi C et al (2013) Abdominal aortic calcification is an independent predictor of cardiovascular events in peritoneal dialysis patients. Ther Apher Dial 17(4):448–453

    Article  PubMed  Google Scholar 

  11. Rahman EU, Chobufo MD, Farah F, Elhamdani A, Khan A, Thompson EA et al (2021) Prevalence and risk factors for the development of abdominal aortic calcification among the US population: NHANES study. Arch Med Sci Atheroscler Dis 6:e95–e101

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rodondi N, Taylor BC, Bauer DC, Lui LY, Vogt MT, Fink HA et al (2007) Association between aortic calcification and total and cardiovascular mortality in older women. J Intern Med 261(3):238–244

    Article  CAS  PubMed  Google Scholar 

  13. Suh SH, Oh TR, Choi HS, Kim CS, Bae EH, Oh KH et al (2022) Abdominal aortic calcification and cardiovascular outcomes in chronic kidney disease: findings from KNOW-CKD study. J Clin Med 11(5):1157

  14. Ma D, Yan H, Yang X, Yu Z, Ni Z, Fang W (2020) Abdominal aortic calcification score as a predictor of clinical outcome in peritoneal dialysis patients: a prospective cohort study. BMC Nephrol 21(1):151

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang AH, Guo WK, Han DW, Zhu M, Liu WH (2022) Association of abdominal aortic calcification with longitudinal changes in left ventricular mass of patients on hemodialysis and its prognostic value. Clin Nephrol 98(4):171–181

    Article  CAS  PubMed  Google Scholar 

  16. Bastos Gonçalves F, Voûte MT, Hoeks SE, Chonchol MB, Boersma EE, Stolker RJ et al (2012) Calcification of the abdominal aorta as an independent predictor of cardiovascular events: a meta-analysis. Heart 98(13):988–994

    Article  PubMed  Google Scholar 

  17. Kauppila LI, Polak JF, Cupples LA, Hannan MT, Kiel DP, Wilson PW (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132(2):245–250

    Article  CAS  PubMed  Google Scholar 

  18. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group (2017) KDIGO 2017 Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl (2011) 7(1):1–59

  19. El Sabry MI, Stino FKR, El-Ghany WAA (2021) Copper: benefits and risks for poultry, livestock, and fish production. Trop Anim Health Prod 53(5):487

    Article  PubMed  Google Scholar 

  20. Bergomi M, Rovesti S, Vinceti M, Vivoli R, Caselgrandi E, Vivoli G (1997) Zinc and copper status and blood pressure. J Trace Elem Med Biol 11(3):166–169

    Article  CAS  PubMed  Google Scholar 

  21. Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  CAS  PubMed  Google Scholar 

  22. Bost M, Houdart S, Oberli M, Kalonji E, Huneau JF, Margaritis I (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115

    Article  CAS  PubMed  Google Scholar 

  23. Cobine PA, Moore SA, Leary SC (2021) Getting out what you put in: copper in mitochondria and its impacts on human disease. Biochim Biophys Acta Mol Cell Res 1868(1):118867

    Article  CAS  PubMed  Google Scholar 

  24. Bagheri B, Akbari N, Tabiban S, Habibi V, Mokhberi V (2015) Serum level of copper in patients with coronary artery disease. Niger Med J 56(1):39–42

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zang X, Huang H, Zhuang Z, Chen R, Xie Z, Xu C et al (2018) The association between serum copper concentrations and cardiovascular disease risk factors in children and adolescents in NHANES. Environ Sci Pollut Res Int 25(17):16951–16958

    Article  CAS  PubMed  Google Scholar 

  26. Wen H, Niu X, Hu L, Sun N, Zhao R, Wang Q et al (2022) Dietary copper intake and risk of myocardial infarction in US adults: a propensity score-matched analysis. Front Cardiovasc Med 9:942000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Torres N, Freire FLA, Dantas-Komatsu RCS, Silva EPD, Queiroz S, Lira NRD et al (2022) Lack of association between inadequate micronutrient intake and prognosis in outpatients with heart failure. Nutrients 14(4):788

  28. Zhang J, Cao J, Zhang H, Jiang C, Lin T, Zhou Z et al (2019) Plasma copper and the risk of first stroke in hypertensive patients: a nested case-control study. Am J Clin Nutr 110(1):212–220

    Article  PubMed  Google Scholar 

  29. Yang L, Chen X, Cheng H, Zhang L (2022) Dietary copper intake and risk of stroke in adults: a case-control study based on National Health and Nutrition Examination Survey 2013–2018. Nutrients 14(3):409

  30. Chen W, Eisenberg R, Mowrey WB, Wylie-Rosett J, Abramowitz MK, Bushinsky DA et al (2020) Association between dietary zinc intake and abdominal aortic calcification in US adults. Nephrol Dial Transplant 35(7):1171–1178

    Article  CAS  PubMed  Google Scholar 

  31. Qin Z, Jiang L, Sun J, Geng J, Chen S, Yang Q et al (2022) Higher visceral adiposity index is associated with increased likelihood of abdominal aortic calcification. Clinics (Sao Paulo) 77:100114

    Article  PubMed  Google Scholar 

  32. Fryar CD, Ostchega Y, Hales CM, Zhang G, Kruszon-Moran D (2017) Hypertension prevalence and control among adults: United States, 2015–2016. NCHS Data Brief 289:1–8

    Google Scholar 

  33. Menke A, Casagrande S, Geiss L, Cowie CC (2015) Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314(10):1021–1029

    Article  CAS  PubMed  Google Scholar 

  34. Kunutsor SK, Dey RS, Laukkanen JA (2021) Circulating serum copper is associated with atherosclerotic cardiovascular disease, but not venous thromboembolism: a prospective cohort study. Pulse (Basel) 9(3–4):109–115

    Article  PubMed  Google Scholar 

  35. Isiozor NM, Kunutsor SK, Vogelsang D, Isiozor I, Kauhanen J, Laukkanen JA (2023) Serum copper and the risk of cardiovascular disease death in Finnish men. Nutr Metab Cardiovasc Dis 33(1):151–157

    Article  CAS  PubMed  Google Scholar 

  36. Shi L, Yuan Y, Xiao Y, Long P, Li W, Yu Y et al (2021) Associations of plasma metal concentrations with the risks of all-cause and cardiovascular disease mortality in Chinese adults. Environ Int 157:106808

    Article  CAS  PubMed  Google Scholar 

  37. Eshak ES, Iso H, Yamagishi K, Maruyama K, Umesawa M, Tamakoshi A (2018) Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study. J Nutr Biochem 56:126–132

    Article  CAS  PubMed  Google Scholar 

  38. Ma X, Jiang S, Yan S, Li M, Wang C, Pan Y et al (2020) Association between copper, zinc, iron, and selenium intakes and TC/HDL-C ratio in US adults. Biol Trace Elem Res 197(1):43–51

    Article  CAS  PubMed  Google Scholar 

  39. Malekahmadi M, Firouzi S, Rezayi M, Ghazizadeh H, Ranjbar G, Ferns GA et al (2020) Association of zinc and copper status with cardiovascular diseases and their assessment methods: a review study. Mini Rev Med Chem 20(19):2067–2078

    Article  CAS  PubMed  Google Scholar 

  40. DiSilvestro RA, Joseph EL, Zhang W, Raimo AE, Kim YM (2012) A randomized trial of copper supplementation effects on blood copper enzyme activities and parameters related to cardiovascular health. Metabolism 61(9):1242–1246

    Article  CAS  PubMed  Google Scholar 

  41. He P, Li H, Liu C, Liu M, Zhang Z, Zhang Y et al (2022) U-shaped association between dietary copper intake and new-onset hypertension. Clin Nutr 41(2):536–542

    Article  CAS  PubMed  Google Scholar 

  42. Zaragatski E, Grommes J, Schurgers LJ, Langer S, Kennes L, Tamm M et al (2016) Vitamin K antagonism aggravates chronic kidney disease-induced neointimal hyperplasia and calcification in arterialized veins: role of vitamin K treatment? Kidney Int 89(3):601–611

    Article  CAS  PubMed  Google Scholar 

  43. Peralta-Ramírez A, Montes de Oca A, Raya AI, Pineda C, López I, Guerrero F et al (2014) Vitamin E protection of obesity-enhanced vascular calcification in uremic rats. Am J Physiol Renal Physiol 306(4):F422-429

    Article  PubMed  Google Scholar 

  44. Lu YY, Chen WL (2021) Clinical relevance of serum selenium levels and abdominal aortic calcification. Biol Trace Elem Res 199(8):2803–2810

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  45. Lee SJ, Lee IK, Jeon JH (2020) Vascular calcification-new insights into its mechanism. Int J Mol Sci 21(8):2685

  46. Saito Y, Nakamura K, Miura D, Yunoki K, Miyoshi T, Yoshida M et al (2017) Suppression of Wnt signaling and osteogenic changes in vascular smooth muscle cells by eicosapentaenoic acid. Nutrients 9(8):858

  47. Liberman M, Johnson RC, Handy DE, Loscalzo J, Leopold JA (2011) Bone morphogenetic protein-2 activates NADPH oxidase to increase endoplasmic reticulum stress and human coronary artery smooth muscle cell calcification. Biochem Biophys Res Commun 413(3):436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim H, Kim HJ, Lee K, Kim JM, Kim HS, Kim JR et al (2012) α-Lipoic acid attenuates vascular calcification via reversal of mitochondrial function and restoration of Gas6/Axl/Akt survival pathway. J Cell Mol Med 16(2):273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mori D, Matsui I, Shimomura A, Hashimoto N, Matsumoto A, Shimada K et al (2018) Protein carbamylation exacerbates vascular calcification. Kidney Int 94(1):72–90

    Article  CAS  PubMed  Google Scholar 

  50. Zhu Y, Ji JJ, Yang R, Han XQ, Sun XJ, Ma WQ et al (2019) Lactate accelerates calcification in VSMCs through suppression of BNIP3-mediated mitophagy. Cell Signal 58:53–64

    Article  CAS  PubMed  Google Scholar 

  51. DiSilvestro RA (1988) Influence of copper intake and inflammation on rat serum superoxide dismutase activity levels. J Nutr 118(4):474–479

    Article  CAS  PubMed  Google Scholar 

  52. Liu H, Deng H, Cui H, Jian Z, Guo H, Fang J et al (2021) Copper induces hepatocyte autophagy via the mammalian targets of the rapamycin signaling pathway in mice. Ecotoxicol Environ Saf 208:111656

    Article  CAS  PubMed  Google Scholar 

  53. Arablou T, Aryaeian N, Djalali M, Shahram F, Rasouli L (2019) Association between dietary intake of some antioxidant micronutrients with some inflammatory and antioxidant markers in active rheumatoid arthritis patients. Int J Vitam Nutr Res 89(5–6):238–245

    Article  CAS  PubMed  Google Scholar 

  54. Johnson WT, Newman SM Jr (2003) Copper deficiency: a potential model for determining the role of mitochondria in cardiac aging. J Am Aging Assoc 26(1–2):19–28

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Johnson WT, Newman SM Jr (2007) Hearts in adult offspring of copper-deficient dams exhibit decreased cytochrome c oxidase activity, increased mitochondrial hydrogen peroxide generation and enhanced formation of intracellular residual bodies. J Nutr Biochem 18(2):97–104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff and the participants of the NHANES study for their valuable contributions.

Author information

Authors and Affiliations

Authors

Contributions

CL analyzed the data and wrote the primary manuscript. DL reviewed and revised the manuscript. All the authors have approved the manuscript for publication.

Corresponding authors

Correspondence to Chang Liu or Dan Liang.

Ethics declarations

Ethics Approval

The studies involving human participants were reviewed and approved by NCHS Research Ethics Review Board (ERB).

Consent to Participate

Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 334 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Liang, D. High Copper Intake Is Associated with Decreased Likelihood of Abdominal Aortic Calcification in Middle-Aged and Older US Adults. Biol Trace Elem Res 202, 1390–1400 (2024). https://doi.org/10.1007/s12011-023-03765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03765-2

Keywords

Navigation