Skip to main content
Log in

Selenomethionine Inhibits NF-κB-mediated Inflammatory Responses of Bovine Mammary Epithelial Cells Caused by Klebsiella pneumoniae by Increasing Autophagic Flux

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae (K. pneumoniae) is one of the major pathogens causing bovine clinical mastitis. Autophagy maintains cellular homeostasis and resists excessive inflammation in eukaryotic organisms. Selenomethionine (Se-Met) is commonly used as a source of selenium supplementation for dairy cows. This study aimed to investigate the effects of Se-Met on inflammatory responses mediated by nuclear factor-kappa B (NF-κB) through autophagy. We infected bovine mammary epithelial cell line (MAC-T) with K. pneumoniae and examined the expression of autophagy-related proteins and changes in autophagic vesicles, LC3 puncta, and autophagic flux at various intervals. The results showed that K. pneumoniae activated the early-stage autophagy of MAC-T cells. The levels of LC3-II, Beclin1, and ATG5, as well as the number of LC3 puncta and autophagic vesicles, increased after 2 h post-treatment. However, the late-stage autophagic flux was blocked. Furthermore, the effect of autophagy on NF-κB-mediated inflammation was investigated with different autophagy levels. The findings showed that enhanced autophagy inhibited the K. pneumoniae-induced inflammatory responses of MAC-T cells. The opposite results were found with the inhibition of autophagy. Finally, we examined the effect of Se-Met on NF-κB-mediated inflammation based on autophagy. The results indicated that Se-Met alleviated K. pneumoniae-induced autophagic flux blockage, inhibited NF-κB-mediated inflammation, and decreased the adhesion of K. pneumoniae to MAC-T cells. The inhibitory effect of Se-Met on NF-κB-mediated inflammation could be partially blocked by the autophagy inhibitor chloroquine (CQ). Overall, Se-Met attenuated K. pneumoniae-induced NF-κB-mediated inflammatory responses by enhancing autophagic flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Gomes F, Henriques M (2016) Control of bovine mastitis: old and recent therapeutic approaches. Curr Microbiol 72:377–382. https://doi.org/10.1007/s00284-015-0958-8

    Article  CAS  PubMed  Google Scholar 

  2. Ashraf A, Imran M (2020) Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim Health Res Rev 21:36–49. https://doi.org/10.1017/S1466252319000094

    Article  PubMed  Google Scholar 

  3. Contreras GA, Rodríguez JM (2011) Mastitis: comparative etiology and epidemiology. J Mammary Gland Biol Neoplasia 16:339–356. https://doi.org/10.1007/s10911-011-9234-0

    Article  PubMed  Google Scholar 

  4. Schukken Y, Chuff M, Moroni P, Gurjar A, Santisteban C, Welcome F, Zadoks R (2012) The “other” gram-negative bacteria in mastitis: Klebsiella, serratia, and more. Vet Clin North Am Food Anim Pract 28:239–256. https://doi.org/10.1016/j.cvfa.2012.04.001

    Article  PubMed  Google Scholar 

  5. Sugiyama M, Watanabe M, Sonobe T, Kibe R, Koyama S, Kataoka Y (2022) Efficacy of antimicrobial therapy for bovine acute Klebsiella pneumoniae mastitis. J Vet Med Sci 84:1023–1028. https://doi.org/10.1292/jvms.21-0617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fu S, Wen C, Wang Z, Qiu Y, Zhang Y, Zuo J, Xu Y, Han X, Luo Z, Chen W, Miao J (2022) Molecular epidemiology and antimicrobial resistance of outbreaks of Klebsiella pneumoniae clinical mastitis in Chinese dairy farms. Microbiol Spectr 10:e0299722. https://doi.org/10.1128/spectrum.02997-22

    Article  CAS  PubMed  Google Scholar 

  7. Galati S, Boni C, Gerra MC, Lazzaretti M, Buschini A (2019) Autophagy: a player in response to oxidative stress and DNA damage. Oxid Med Cell Longev 2019:1–12. https://doi.org/10.1155/2019/5692958

    Article  CAS  Google Scholar 

  8. Cao W, Li J, Yang K, Cao D (2021) An overview of autophagy: mechanism, regulation and research progress. Bull Cancer 108:304–322. https://doi.org/10.1016/j.bulcan.2020.11.004

    Article  PubMed  Google Scholar 

  9. Deretic V (2021) Autophagy in inflammation, infection, and immunometabolism. Immunity 54:437–453. https://doi.org/10.1016/j.immuni.2021.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rekha RS, Karadottir H, Ahmed S, Gudmundsson GH, Agerberth B, Bergman P (2020) Innate effector systems in primary human macrophages sensitize multidrug-resistant Klebsiella pneumoniae to antibiotics. Infect Immun 88:e00186-e120. https://doi.org/10.1128/IAI.00186-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhong Z, Sanchez-Lopez E, Karin M (2016) Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166:288–298. https://doi.org/10.1016/j.cell.2016.05.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deretic V, Levine B (2018) Autophagy balances inflammation in innate immunity. Autophagy 14:243–251. https://doi.org/10.1080/15548627.2017.1402992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peng X, Wang Y, Li H, Fan J, Shen J, Yu X, Zhou Y, Mao H (2019) ATG5-mediated autophagy suppresses NF-κB signaling to limit epithelial inflammatory response to kidney injury. Cell Death Dis 10:253. https://doi.org/10.1038/s41419-019-1483-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zou L, Lei H, Shen J, Liu X, Zhang X, Wu L, Hao J, Jiang W, Hu Z (2020) HO-1 induced autophagy protects against IL-1 β-mediated apoptosis in human nucleus pulposus cells by inhibiting NF-κB. Aging (Albany NY) 12:2440–2452. https://doi.org/10.18632/aging.102753

    Article  CAS  PubMed  Google Scholar 

  15. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  16. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R (2017) A summary of new findings on the biological effects of selenium in selected animal species-a critical review. Int J Mol Sci 18:2209. https://doi.org/10.3390/ijms18102209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiao J, Khan MZ, Ma Y, Alugongo GM, Ma J, Chen T, Khan A, Cao Z (2021) The antioxidant properties of selenium and vitamin E; their role in periparturient dairy cattle health regulation. Antioxidants (Basel) 10:1555. https://doi.org/10.3390/antiox10101555

    Article  CAS  PubMed  Google Scholar 

  18. Ma X, Xu S, Li J, Cui L, Dong J, Meng X, Zhu G, Wang H (2022) Selenomethionine protected BMECs from inflammatory injury and oxidative damage induced by Klebsiella pneumoniae by inhibiting the NF-kappaB and activating the Nrf2 signaling pathway. Int Immunopharmacol 110:109027. https://doi.org/10.1016/j.intimp.2022.109027

    Article  CAS  PubMed  Google Scholar 

  19. Cheng Z, Shu Y, Li X, Li Y, Zhou S, Liu H (2022) Evaluation of potential cardiotoxicity of ammonia: l-selenomethionine inhibits ammonia-induced cardiac autophagy by activating the PI3K/AKT/mTOR signaling pathway. Ecotoxicol Environ Saf 233:113304. https://doi.org/10.1016/j.ecoenv.2022.113304

    Article  CAS  PubMed  Google Scholar 

  20. Hu X, Lin R, Zhang C, Pian Y, Luo H, Zhou L, Shao J, Ren X (2022) Nano-selenium alleviates Cadmium-induced mouse leydig cell injury, via the inhibition of reactive oxygen species and the restoration of autophagic flux. Reprod Sci. https://doi.org/10.1007/s43032-022-01146-z

    Article  PubMed  Google Scholar 

  21. Ruegg PL (2017) A 100-year review: mastitis detection, management, and prevention. J Dairy Sci 100:10381–10397. https://doi.org/10.3168/jds.2017-13023

    Article  CAS  PubMed  Google Scholar 

  22. Thompson-Crispi K, Atalla H, Miglior F, Mallard BA (2014) Bovine mastitis: frontiers in immunogenetics. Front Immunol 5:493. https://doi.org/10.3389/fimmu.2014.00493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng Z, Gorden PJ, Xia X, Zheng Y, Li G (2022) Whole-genome analysis of Klebsiella pneumoniae from bovine mastitis milk in the U.S. Environ Microbiol 24:1183–1199. https://doi.org/10.1111/1462-2920.15721

  24. Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737. https://doi.org/10.1038/nri3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma S, Tiwari M, Tiwari V (2020) Molecular mechanisms of bacteria induced autophagy and its escape strategies. Future Microbiol 15:303–306. https://doi.org/10.2217/fmb-2019-0285

    Article  CAS  PubMed  Google Scholar 

  26. Lee HA, Park MH, Song Y, Na HS, Chung J (2020) Role of Aggregatibacter actinomycetemcomitans-induced autophagy in inflammatory response. J Periodontol 91:1682–1693. https://doi.org/10.1002/JPER.19-0639

    Article  CAS  PubMed  Google Scholar 

  27. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91. https://doi.org/10.4161/auto.1.2.1697

    Article  CAS  PubMed  Google Scholar 

  28. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326. https://doi.org/10.1016/j.cell.2010.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145. https://doi.org/10.1074/jbc.M702824200

    Article  CAS  PubMed  Google Scholar 

  30. Jiang P, Mizushima N (2015) LC3- and p62-based biochemical methods for the analysis of autophagy progression in mammalian cells. Methods 75:13–18. https://doi.org/10.1016/j.ymeth.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  31. Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T, Cossart P, Higgins DE, Brumell JH (2007) Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3:442–451. https://doi.org/10.4161/auto.4450

    Article  CAS  PubMed  Google Scholar 

  32. Campoy E, Colombo MI (2009) Autophagy subversion by bacteria. Curr Top Microbiol Immunol 335:227–250. https://doi.org/10.1007/978-3-642-00302-8_11

    Article  CAS  PubMed  Google Scholar 

  33. Fedrigo GV, Campoy EM, Di Venanzio G, Colombo MI, Garcia Vescovi E (2011) Serratia marcescens is able to survive and proliferate in autophagic-like vacuoles inside non-phagocytic cells. PLoS One 6:e24054. https://doi.org/10.1371/journal.pone.0024054

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ge P, Lei Z, Yu Y, Lu Z, Qiang L, Chai Q, Zhang Y, Zhao D, Li B, Pang Y, Liu CH, Wang J (2022) M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival. Autophagy 18:576–594. https://doi.org/10.1080/15548627.2021.1938912

    Article  CAS  PubMed  Google Scholar 

  35. Huang J, Brumell JH (2014) Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 12:101–114. https://doi.org/10.1038/nrmicro3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R (2021) NF-kappaB: at the borders of autoimmunity and inflammation. Front Immunol 12:716469. https://doi.org/10.3389/fimmu.2021.716469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT (2007) Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27:135–144. https://doi.org/10.1016/j.immuni.2007.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hoesel B, Schmid JA (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 12:86. https://doi.org/10.1186/1476-4598-12-86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5:580–592. https://doi.org/10.1016/j.chom.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  40. Cadwell K (2016) Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat Rev Immunol 16:661–675. https://doi.org/10.1038/nri.2016.100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee JP, Foote A, Fan H, Peral de Castro C, Lang T, Jones SA, Gavrilescu N, Mills KH, Leech M, Morand EF, Harris J (2016) Loss of autophagy enhances MIF/macrophage migration inhibitory factor release by macrophages. Autophagy 12:907–916. https://doi.org/10.1080/15548627.2016.1164358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao B, Chen Y, Cui J, Sun Y, Xu T (2022) Zw10 negatively regulates the MyD88-mediated NF-κB signaling through autophagy in teleost fish. Dev Comp Immunol 132:104401. https://doi.org/10.1016/j.dci.2022.104401

    Article  CAS  PubMed  Google Scholar 

  43. Fujishima Y, Nishiumi S, Masuda A, Inoue J, Nguyen NM, Irino Y, Komatsu M, Tanaka K, Kutsumi H, Azuma T, Yoshida M (2011) Autophagy in the intestinal epithelium reduces endotoxin-induced inflammatory responses by inhibiting NF-κB activation. Arch Biochem Biophys 506:223–235. https://doi.org/10.1016/j.abb.2010.12.009

    Article  CAS  PubMed  Google Scholar 

  44. Tao L, Liu K, Li J, Zhang Y, Cui L, Dong J, Meng X, Zhu G, Wang H (2022) Selenomethionine alleviates NF-kappaB-mediated inflammation in bovine mammary epithelial cells induced by Escherichia coli by enhancing autophagy. Int Immunopharmacol 110:108989. https://doi.org/10.1016/j.intimp.2022.108989

    Article  CAS  PubMed  Google Scholar 

  45. Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am J Cancer Res 1:629–649

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263. https://doi.org/10.1038/ni.2215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arshad MA, Ebeid HM, Hassan FU (2021) Revisiting the effects of different dietary sources of selenium on the health and performance of dairy animals: a review. Biol Trace Elem Res 199:3319–3337. https://doi.org/10.1007/s12011-020-02480-6

    Article  CAS  PubMed  Google Scholar 

  48. Kumari S, Mehta SL, Li PA (2012) Glutamate induces mitochondrial dynamic imbalance and autophagy activation: preventive effects of selenium. PLoS One 7:e39382. https://doi.org/10.1371/journal.pone.0039382

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang B, Li Y, Ma Y, Zhang X, Yang L, Shen X, Zhang J, Jing L (2021) Selenium attenuates ischemia/reperfusion injury-induced damage to the blood-brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway-mediated autophagy inhibition. Int J Mol Med 48:178. https://doi.org/10.3892/ijmm.2021.5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xue H, Cao H, Xing C, Feng J, Zhang L, Zhang C, Hu G, Yang F (2021) Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrum. Toxicology 459:152855. https://doi.org/10.1016/j.tox.2021.152855

    Article  CAS  PubMed  Google Scholar 

  51. Avery J, Hoffmann P (2018) Selenium, selenoproteins, and immunity. Nutrients 10:1203. https://doi.org/10.3390/nu10091203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang H, Bi C, Wang Y, Sun J, Meng X, Li J (2018) Selenium ameliorates Staphylococcus aureus-induced inflammation in bovine mammary epithelial cells by inhibiting activation of TLR2, NF-kappaB and MAPK signaling pathways. BMC Vet Res 14:197. https://doi.org/10.1186/s12917-018-1508-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (32273070), the Open Project of International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, the Jiangsu Agricultural Industry Technology System (No. JATS [2022] 499), the 333 High-level Talent Training Project of Jiangsu Province (CN), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project (D18007).

Author information

Authors and Affiliations

Authors

Contributions

SX and HW designed the study. SX performed the main experiments and drafted the manuscript. YM, JD, and KL helped with the experiments. HW, JL, and JD acquired funding and supervised the study. HW, LC, XM, and GZ participated in the review and revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Heng Wang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Miao, Y., Dong, J. et al. Selenomethionine Inhibits NF-κB-mediated Inflammatory Responses of Bovine Mammary Epithelial Cells Caused by Klebsiella pneumoniae by Increasing Autophagic Flux. Biol Trace Elem Res 202, 1568–1581 (2024). https://doi.org/10.1007/s12011-023-03757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03757-2

Keywords

Navigation