Skip to main content
Log in

Comparative Effect of Chemical and Green Zinc Nanoparticles on the Growth, Hematology, Serum Biochemical, Antioxidant Parameters, and Immunity in Serum and Mucus of Goldfish, Carassius auratus (Linnaeus, 1758)

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Recently, nano feed supplement research has great attention to improving healthy aquatic production and improving the aquatic environment. With the aims of the present study, chemical and green synthesized nanoparticles are characterized by various instrumentation analyses, namely UV-Vis spectrophotometry (UV-Vis), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, and scanning electron microscope (SEM). After characterization analysis of these nanoparticles utilized in aquatic animals, the composition ratio is as follows: controls (without ZnO-NPs (0 mg/L)), T1 (0.9 mg/L ZnO-NPs), T2 (1.9 mg/L ZnO-NPs), T3 (0.9 mg/L GZnO-NPs), T4 (1.9 mg/L GZnO-NPs). SEM investigation report demonstrates that the structure of the surface of green synthesized zinc oxide nanoparticles (GZnO-NPs) was conical shape and the size ranging was from 60 to 70 nm. Concerning hematological parameters, the quantity of hemoglobin increased in different doses of green zinc nanoparticles, but the values of MCV and MCH decreased somewhat. However, this decrease was the highest in the T2 group. Total protein and albumin decreased in T2 and triglyceride, cholesterol, glucose, cortisol, creatinine, and urea increased, while in T3 and T4 groups, changes in biochemical parameters were evaluated as positive. Mucosal and serum immunological parameters in the T2 group showed a significant decrease compared to other groups. In zinc nanoparticles, with increasing dose, oxidative damage is aggravated, so in the T2 group, a decrease in antioxidant enzymes and an increase in MDA were seen compared to other groups. In this regard, the concentration of liver enzymes AST and ALT increased in the T2 group compared with control and other groups. This can confirm liver damage in this dose compared with control and other groups. This research work suggests that green synthesized form of zinc nanoparticles in higher doses have less toxic effects in comparison to the chemical form of zinc nanoparticles and can act as suitable nutrient supplements in aquatic animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request to the corresponding authors.

References

  1. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306

    Article  CAS  PubMed  Google Scholar 

  2. Forouhar Vajargah M, Mohamadi Yalsuyi A, Hedayati A, Faggio C (2018) Histopathological lesions and toxicity in common carp (Cyprinus carpio L. 1758) induced by copper nanoparticles. Microsc Res Tech 81:724–729

    Article  CAS  PubMed  Google Scholar 

  3. Mirghaed AT, Yarahmadi P, Craig PM, Farsani HG, Ghysvandi N, Eagderi S (2018) Hemato-immunological, serum metabolite and enzymatic stress response alterations in exposed rainbow trout (Oncorhynchus mykiss) to nanosilver. Int J Aquat Biol 6(4):221–234

    Google Scholar 

  4. Mohsenpour R, Mousavi-Sabet H, Hedayati A, Rezaei A, Yalsuyi AM, Faggio C (2020) In vitro effects of silver nanoparticles on gills morphology of female Guppy (Poecilia reticulate) after a short-term exposure. Microsc Res Tech 83:1552–1557

    Article  CAS  PubMed  Google Scholar 

  5. Rashidian G, Lazado CC, Mahboub HH, Mohammadi-Aloucheh R, Prokić MD, Nada HS, Faggio C (2021) Chemically and green synthesized ZnO nanoparticles alter key immunological molecules in common carp (Cyprinus carpio) skin mucus. Int J Mol Sci 22:3270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tao X, Liao Z, Zhang Y, Fu F, Hao M, Song Y, Song E (2021) Aptamer-quantum dots and teicoplanin-gold nanoparticles constructed FRET sensor for sensitive detection of Staphylococcus aureus. Chin Chem Lett 32(2):791–795

    Article  CAS  Google Scholar 

  7. Vijayakumar S, Vaseeharan B, Sudhakaran R, Jeyakandan J, Ramasamy P, Sonawane A, Padhi A, Velusamy P, Anbu P, Faggio C (2019) Bioinspired zinc oxide nanoparticles using Lycopersicon esculentum for antimicrobial and anticancer applications. J Clust Sci 30:1465–1479

    Article  CAS  Google Scholar 

  8. Bashar A, Hasan NA, Haque MM, Rohani MF, Hossain MS (2021) Effects of dietary silica nanoparticle on growth performance, protein digestibility, hematology, digestive morphology, and muscle composition of Nile tilapia, Oreochromis Niloticus. Front Mar Sci 8:706179

    Article  Google Scholar 

  9. Fasil DM, Patel P, Parashar SKS, Das B (2020) Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: a holistic review. Aquaculture 519:734770. https://doi.org/10.1016/j.aquaculture.2019.734770

    Article  Google Scholar 

  10. Nagati V, Koyyati R, Donda MR, Alwala J, Kundle K, R, Padigya, P. R. (2012) Green synthesis and characterization of silver nanoparticles from Cajanus cajan leaf extract and its antibacterial activity. Int J Nanomater Biostrucure 2(3):39–43

    Google Scholar 

  11. Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G (2017) Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res 24:17326–17346. https://doi.org/10.1007/s11356-017-9360-3

    Article  Google Scholar 

  12. Kumar N et al (2018a) Temperature induces lead toxicity in Pangasius hypophthalmus: an acute test, antioxidative status, and cellular metabolic stress. Int J Environ Sci Technol 15(1):57–68

    Article  CAS  Google Scholar 

  13. Thangapandiyan S, Monika S (2020a) Green synthesized zinc oxide nanoparticles as feed additives to improve growth, biochemical, and hematological parameters in freshwater fish Labeo rohita. Biol Trace Elem Res 195:636–647

    Article  CAS  PubMed  Google Scholar 

  14. Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M (2023) Applications of green synthesized metal nanoparticles—a review. Biol Trace Elem Res:1–27

  15. Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac 12:925–942. https://doi.org/10.1111/raq.12356

    Article  Google Scholar 

  16. Xu W, Huang K, Jin W, Luo D, Liu H, Li Y et al (2018) Catalytic and antibacterial properties of biosynthesized silver nanoparticles using native inulin. RSC Adv 8:28746–28752. https://doi.org/10.1039/c8ra03386b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jennings S, Stentiford GD, Leocadio AM, Jeffery KR, Metcalfe JD, Katsiadaki I et al (2016) Aquatic food security: insights into challenges and solutions from an analysis of interactions between fisheries, aquaculture, food safety, human health, fish and human welfare, economy and environment. Fish Fish 17:893–938. https://doi.org/10.1111/faf.12152

    Article  Google Scholar 

  18. Raeeszadeh M, Karimfar B, Amiri AA, Akbari A (2021) Protective effect of nano-vitamin C on infertility due to oxidative stress induced by lead and arsenic in male rats. J Chem 2021:1–12

    Article  Google Scholar 

  19. Huang F, Jiang M, Wen H et al (2015a) Dietary zinc requirement of adult Nile tilapia (Oreochromis niloticus) fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses. Aquaculture 439:53–59

    Article  CAS  Google Scholar 

  20. Pieszka M, Bederska-Łojewska D, Szczurek P, Pieszka M (2019) The membrane interactions of nano-silica and its potential application in animal nutrition. Animals 9:1041. https://doi.org/10.3390/ani9121041

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 7:55–87

    Google Scholar 

  22. Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq HA (2013) Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomedicine 8:983

    PubMed  PubMed Central  Google Scholar 

  23. Ma H, Williams PL, Diamond SA (2013a) Ecotoxicity of manufactured ZnO nanoparticles—a review. Environ Pollut 172:76–85

    Article  CAS  PubMed  Google Scholar 

  24. Malhotra N, Ger TR, Uapipatanakul B, Huang JC, Chen KHC, Der Hsiao C (2020) Review of copper and copper nanoparticle toxicity in fish. Nanomaterials 10:1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916

    Article  PubMed  PubMed Central  Google Scholar 

  26. Raeeszadeh M, Karimi P, Khademi N, Mortazavi P (2022) The effect of broccoli extract in arsenic-induced experimental poisoning on the hematological, biochemical, and electrophoretic parameters of the liver and kidney of rats. Evid Based Complement Alternat Med 2022

  27. Ilinskaya AN, Dobrovolskaia MA (2014) Immunosuppressive and anti-inflammatory properties of engineered nanomaterials. Br J Pharmacol 171:3988–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jovanović B, Palić D (2012) Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish-Review of current knowledge, gap identification, and call for further research. Aquat Toxicol 118:141–151

    Article  PubMed  Google Scholar 

  29. Mahboub HH, Shahin K, Zaglool AW et al (2020a) Efcacy of nano zinc oxide dietary supplements on growth performance, immunomodulation and disease resistance of African catfsh Clarias gariepinus. Dis Aquat Organ 142:147–160. https://doi.org/10.3354/dao03531

    Article  PubMed  Google Scholar 

  30. Rohani MF, Bristy AA, Hasan J, Hossain MK, Shahjahan M (2022) Dietary zinc in association with vitamin E promotes growth performance of Nile tilapia. Biol Trace Elem Res 200:4150–4159

    Article  CAS  PubMed  Google Scholar 

  31. Zhang YN, Wang S, Li KC et al (2020) Estimation of dietary zinc requirement for laying duck breeders: effects on productive and reproductive performance, egg quality, tibial characteristics, plasma biochemical and antioxidant indices, and zinc deposition. Poult Sci 99:454–462

    Article  CAS  PubMed  Google Scholar 

  32. Livingstone C (2015) Zinc: physiology, defciency, and parenteral nutrition. Nutr Clin Pract 30:371–382. https://doi.org/10.1177/0884533615570376

    Article  CAS  PubMed  Google Scholar 

  33. Salim HM, Lee HR, Jo C et al (2012) Effect of dietary zinc proteinate supplementation on growth performance, and skin and meat quality of male and female broiler chicks. Br Poultry Sci 53:116–124. https://doi.org/10.1080/00071668.2012.658757

    Article  CAS  Google Scholar 

  34. Yu HR, Li LY, Shan LL et al (2021) Effect of supplemental dietary zinc on the growth, body composition and anti-oxidant enzymes of coho salmon (Oncorhynchus kisutch) alevins. Aquac Rep 20:100744

    Article  Google Scholar 

  35. Hasnat A, Rani B, Kohli MPS, Chandraprakash G (2012) Zinc supplementation and its effect on thermal stress resistance in Carassius auratus Fry. Isr J Aquac - Bamidgeh IJA 64:1–7

    Google Scholar 

  36. Huang S, Wang L, Liu L, Hou Y, Li L (2015b) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400. https://doi.org/10.1007/s13593-014-0274-x

    Article  Google Scholar 

  37. Jiang M, Wu F, Huang F et al (2016) Effects of dietary Zn on growth performance, antioxidant responses, and sperm motility of adult blunt snout bream, Megalobrama amblycephala. Aquaculture 464:121–128. https://doi.org/10.1016/j.aquaculture.2016.06.025

    Article  CAS  Google Scholar 

  38. Liang J-J, Yang H-J, Liu Y-J et al (2012) Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquacult Nutr 18:380–387. https://doi.org/10.1111/j.1365-2095.2011.00935.x

    Article  CAS  Google Scholar 

  39. Mahboub H, Shahin K, Zaglool A, Roushdy E, Ahmed S (2020b) Efficacy of nano zinc oxide dietary supplements on growth performance, immunomodulation and disease resistance of African catfish Clarias gariepinus. Dis Aquat Organ 142:147–160

    Article  PubMed  Google Scholar 

  40. Shahpar Z, Johari SA (2019) Effects of dietary organic, inorganic, and nanoparticulate zinc on rainbow trout, Oncorhynchus mykiss larvae. Biol Trace Elem Res 190:535–540. https://doi.org/10.1007/s12011-018-1563-z

    Article  CAS  PubMed  Google Scholar 

  41. Shi B, Jin M, Jiao L et al (2020) Effects of dietary zinc level on growth performance, lipolysis and expression of genes involved in the calcium/calmodulin-dependent protein kinase kinase-β/ AMP-activated protein kinase pathway in juvenile Pacifc white shrimp. Br J Nutr 124:773–784. https://doi.org/10.1017/S0007114520001725

    Article  CAS  PubMed  Google Scholar 

  42. Hao L, Chen L, Hao J, Zhong N (2013) Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotoxicol Environ Saf 91:52–60

    Article  CAS  PubMed  Google Scholar 

  43. Li XF, Wang PF, Feng CCL, Liu DQ, Chen JK, Wu FC (2019) Acute toxicity and hazardous concentrations of zinc to native freshwater organisms under different pH values in China. Bull Environ Contam Toxicol 103:120–126

    Article  CAS  PubMed  Google Scholar 

  44. Pagano M, Porcino C, Briglia M, Fiorino E, Vazzana M, Silvestro S, Faggio C (2017) The influence of exposure of cadmium chloride and zinc chloride on haemolymph and digestive gland cells from Mytilus galloprovincialis. Int J Environ Res 11:207–216

    Article  CAS  Google Scholar 

  45. Amornpitoksuk P, Suwanboon S, Sangkanu S, Sukhoom A, Wudtipan J, Srijan K, Kaewtaro S (2011) Synthesis, photocatalytic and antibacterial activities of ZnO particles modified by diblock copolymer. Powder Technol 212:432–438

    Article  CAS  Google Scholar 

  46. Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J (2012) A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J Membr Sci 389:155–161

    Article  CAS  Google Scholar 

  47. Brayner R, Dahoumane SA, Yéprémian C, Djediat C, Meyer M, Couté A, Fiévet F (2010) ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir 26:6522–6528

    Article  CAS  PubMed  Google Scholar 

  48. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29:2587–2595

    Article  CAS  PubMed  Google Scholar 

  49. Wong SWY, Leung PTY, Djurišić AB, Leung KMY (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618

    Article  CAS  PubMed  Google Scholar 

  50. Yu LP, Fang T, Xiong DW, Zhu WT, Sima XF (2011) Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, OH production and particle dissolution in distilled water. J Environ Monit 13:1975–1982

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  Google Scholar 

  52. Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983

    Article  CAS  PubMed  Google Scholar 

  53. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7:184–192

    Article  CAS  PubMed  Google Scholar 

  54. Das D, Nath BC, Phukon P, Kalita A, Dolui SK (2013) Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf B Biointerfaces 111:556–560

    Article  CAS  PubMed  Google Scholar 

  55. Haghighat F, Kim Y, Sourinejad I, Yu IJ, Johari SA (2021) Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). Chemosphere 262:127805

    Article  CAS  PubMed  Google Scholar 

  56. Zeumer R, Galhano V, Monteiro MS, Kuehr S, Knopf B, Meisterjahn B, Soares AMVM, Loureiro S, Lopes I, Schlechtriem C (2020) Chronic effects of wastewater-borne silver and titanium dioxide nanoparticles on the rainbow trout (Oncorhynchus mykiss). Sci Total Environ 723:137974

    Article  CAS  PubMed  Google Scholar 

  57. Zhao HZ, Lu GH, Xia J, Jin SG (2012) Toxicity of nanoscale CuO and ZnO to Daphnia magna. Chem Res Chin Univ 28:209–213

    CAS  Google Scholar 

  58. Connolly M, Fernández M, Conde E, Torrent F, Navas JM, Fernández Cruz ML (2016) Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci Total Environ 551-552:334–343

    Article  CAS  PubMed  Google Scholar 

  59. Gavade NL, Kadam AN, Suwarnkar MB, Ghodake VP, Garadkar KM (2015) Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Spectrochim Acta A Mol Biomol Spectrosc 136:953

    Article  CAS  PubMed  Google Scholar 

  60. Hudlikar M, Joglekar S, Dhaygude M, Kodam K (2012) Latex-mediated synthesis of ZnS nanoparticles. J Nanopart Res 14:865

    Article  Google Scholar 

  61. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988

    Article  CAS  Google Scholar 

  62. Aldalbahi A, Alterary S, Almoghim RAA, Awad MA, Aldosari NS, Alghannam SF, Alabdan AN, Alharbi S, Alateeq BAM, Al Mohsen AA, Alkathiri MA, Alrashed RA (2020a) Greener synthesis of zinc oxide nanoparticles: characterization and multifaceted applications. Molecules 25:4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ahmed S, Annu S, Chaudhry SA, Ikram S (2017) A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J Photochem Photobiol B 166:272

    Article  CAS  PubMed  Google Scholar 

  64. Alagumuthu G, Kirubha R (2012) Green synthesis of silver nanoparticles using Cissus quadrangularis plant extract and their antibacterial activity University. J. Nanomater. Biostructures 2(3):30–33

    Google Scholar 

  65. Żelechowska K, Karczewska-Golec J, Karczewski J, Łoś M, Kłonkowski AM, Węgrzyn G, Golec P (2016) Phage-Directed Synthesis of Photoluminescent Zinc Oxide Nanoparticles under Benign Conditions. Bioconjug Chem 27:1999

    Article  PubMed  Google Scholar 

  66. Abdelkhalek A, Al-Askar AA (2020) Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against Tobacco mosaic virus. Appl Sci 10:5054

    Article  CAS  Google Scholar 

  67. Salem SS, Fouda A (2020) Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res 2020:1–27

    Google Scholar 

  68. Sundrarajan M, Ambika S, Bharathi K (2015) Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv Powder Technol 26:1294–1299

    Article  CAS  Google Scholar 

  69. Elumalai K, Velmurugan S (2015a) Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl Surf Sci 345(22):329–336

    Article  CAS  Google Scholar 

  70. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe 3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:5954–5964

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mashjoor S, Alishahi M, Dezfuly ZT (2019) Comparative toxicity assessment of chemical nanosilver and biosynthetic silver nanoparticles produced by marine macroalgae from the Persian Gulf in biomarker: Artemia nauplii. J Vet Res 74:73–82

    Google Scholar 

  72. Agarwal H, Venkat Kumar S, Rajeshkumar S (2017) A review on green synthesis of zinc oxide nanoparticles – an eco-friendly approach. Resour Technol 3:406–413

    Google Scholar 

  73. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275

    Article  CAS  Google Scholar 

  74. Sangeetha G, Rajeshwari S, Venckatesh R (2011a) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566

    Article  CAS  Google Scholar 

  75. Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015) Synthesis, characterization and photocatalytic activity of ZnO nanoparticles prepared by biological method. Spectrochim Acta A Mol Biomol Spectrosc 143:304

    Article  CAS  PubMed  Google Scholar 

  76. Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015) Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 143:158

    Article  CAS  PubMed  Google Scholar 

  77. Vidya C, Prabha MC, Raj MA (2016) Green mediated synthesis of zinc oxide nanoparticles for the photocatalytic degradation of Rose Bengal dye. Environ Nanotechnol Monit Manag 6:134–138

    Google Scholar 

  78. Fowsiya J, Madhumitha G, Al-Dhabi NA, Arasu MV (2016) Photocatalytic degradation of Congo red using Carissa edulis extract capped zinc oxide nanoparticles. J Photochem Photobiol B Biol 162:395–401

    Article  CAS  Google Scholar 

  79. Sathishkumar G, Rajkuberan C, Manikandan K, Prabukumar S, DanielJohn J, Sivaramakrishnan S (2017) Facile biosynthesis of antimicrobial zinc oxide (ZnO) nanoflakes using leaf extract of Couroupita guianensis Aubl. Mater Lett 188:383–386

    Article  CAS  Google Scholar 

  80. Linnaeus C (1758) System a naturae per regna trinaturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus 1. Laurentii Salvii, Holmiae (Stockholm)

    Google Scholar 

  81. Miandare HK et al (2016) The effects of galactooligosaccharide on systemic and mucosal immune response, growth performance and appetite related gene transcript in goldfish (Carassius auratus gibelio). Fish Shellfish Immunol 55:479–483

    Article  CAS  PubMed  Google Scholar 

  82. Tlusty M (2002) The benefits and risks of aquacultural production for the aquarium trade. Aquaculture 19(205):203

    Article  Google Scholar 

  83. Balon EK (2004) About the oldest domesticates among fishes. J Fish Biol 65:1–27

    Article  Google Scholar 

  84. Abbou F, Azzi R, Ouffai K, Haci IAE, Belyagoubi-Benhammou N, Bensouici C, Benamar H (2022) Phenolic profile, antioxidant and enzyme inhibitory properties of phenolic-rich fractions from the aerial parts of Mentha pulegium L. S Afr J Bot 146:196–204

    Article  CAS  Google Scholar 

  85. Chalchat JC, Gorunovic MS, Maksimovic ZA, Petrovic SD (2000) Essential oil of wild growing mentha pulegium L. From yugoslavia. J Essent Oil Res 12:598–600

    Article  CAS  Google Scholar 

  86. Kamkar A, Jebelli Javan A, Asadi F, Kamalinejad M (2010a) The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil. Food Chem Toxicol 48(7):1796–1800

    Article  CAS  PubMed  Google Scholar 

  87. Cherrat L, Espina L, Bakkali M, Pagan R, Laglaoui A (2014) Chemical composition, antioxidant and antimicrobial properties of Mentha pulegium, Lavandula stoechas and Satureja calamintha Scheele essential oils and an evaluation of their bactericidal effect in combined processes. Food Chem Toxicol 22:221–229

    CAS  Google Scholar 

  88. Darvishi E, Kahrizi D, Arkan E (2019) Comparison of different properties of zinc oxide nanoparticles synthesized by the green (using Juglans regia L. leaf extract) and chemical methods. J Mol Liq 286:110831

    Article  CAS  Google Scholar 

  89. Chanda S (2013) Silver nanoparticles (medicinal plants mediated): a new generation of antimicrobials to combat microbial pathogens- a review. Microb Pathog Strateg Combat Sci Technol Educ 4:1314–1323

    Google Scholar 

  90. Mohammadlou M, Maghsoudi H, Jafarizadeh-Malmiri H (2016) A review on green silver nanoparticles based on plants: synthesis, potential applications and eco-friendly approach. Int Food Res J 23(2):446

    CAS  Google Scholar 

  91. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B Biointerfaces 2(1):152–159

    Article  Google Scholar 

  92. Rahimi-Nasrabadi M, Pourmortazavi SM, Shandiz SAS, Ahmadi F, Batooli GH (2014) Synthesis of silver nanoparticles using Eucalyptus Leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat Prod Res 28:1964–1969

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Y, Bau Y, Jia J, Gao N, Li Y, Zhang R et al (2014) Perturbation of physiological systems by nanoparticles. Chem Soc Rev 43:3762–3809

    Article  CAS  PubMed  Google Scholar 

  94. Ghafarifarsani H, Hedayati SA, Yousefi M, Hoseinifar SH, Yarahmadi P, Mahmoudi SS, Doan HV (2022a) Toxic and bioaccumulative effects of zinc nanoparticle exposure to goldfish, Carassius auratus (Linnaeus, 1758). Drug Chem Toxicol 1-11. https://doi.org/10.1080/01480545.2022.2115509

  95. Farsani HG, Doria HB, Jamali H, Hasanpour S, Mehdipour N, Rashidiyan G (2017) The protective role of vitamin E on Oreochromis niloticus exposed to ZnONP. Ecotoxicol Environ Saf 145:1–7

    Article  Google Scholar 

  96. Ghafarifarsani H, Hoseinifar SH, Sheikhlar A, Raissy M, Chaharmahali FH, Maneepitaksanti W, Faheem M, Van Doan H (2022b, 2022) The effects of dietary thyme oil (Thymus vulgaris) essential oils for common carp (Cyprinus carpio): growth performance, digestive enzyme activity, antioxidant defense, tissue and mucus immune parameters, and resistance against Aeromonas hydrophila. Aquacult Nutr:7942506

  97. Ghafarifarsani H, Hoseinifar SH, Adorian TJ, Ferrigolo FRG, Raissy M, Van Doan H (2021) The effects of combined inclusion of Malvae sylvestris, Origanum vulgare, and Allium hirtifolium boiss for common carp (Cyprinus carpio) diet: growth performance, antioxidant defense, and immunological parameters. Fish Shellfish Immunol 119:670–677

    Article  CAS  PubMed  Google Scholar 

  98. Witeska M, Kondera E, Lugowska K, Bojarski B (2022) Hematological methods in fish – not only for beginners. Aquaculture 547:737498

    Article  CAS  Google Scholar 

  99. Qaderi Forough M, Raeeszadeh M, Amiri AA (2017) Dose-response changes of Brassica oleracea var. italica hydroalcholic extract in the control of oxidative stress by induction of diazinon on the cells of testicular tissue in male adult rat. J Rafsanjan Univ Med Sci Health Serv 16(7):593–604

    Google Scholar 

  100. Nishikimi M, Rao NA, Yagi Y (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854

    Article  CAS  PubMed  Google Scholar 

  101. Yano T (1992) Assays of hemolytic complement activity. In: Stolen JS (ed) Techniques in Fish Immunology. SOS publication, Fair haven, pp 131–141

    Google Scholar 

  102. Sahoo PK, Kumari J, Mishra BK (2005) Non-specific immune responses in juveniles of Indian major carps. J Appl Ichthyol 21:151–155

    Article  Google Scholar 

  103. Ross NW, Firth KJ, Wang A, Burka JF, Johnson SC (2000) Changes in hydrolytic enzyme activities of naïve Atlantic salmon Salmo salar skin mucus due to infection with the salmon louse Lepeophtheirus salmonis and cortisol implantation. Dis Aquat Organ 41(1):43–51

    Article  CAS  PubMed  Google Scholar 

  104. Rad SS, Sani AM, Mohseni S (2019) Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb Pathog 131:239–245. https://doi.org/10.1016/j.micpath.2019.04.022

    Article  CAS  PubMed  Google Scholar 

  105. Nandana CN, Christeena M, Bharathi D (2021) Synthesis and characterization of chitosan/silver nanocomposite using rutin for antibacterial, antioxidant and photocatalytic applications. J Clust Sci:1–11

  106. Lingaraju K, Naika HR, Manjunath K, Basavaraj R, Nagabhushana H, Nagaraju G, Suresh D (2016) Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl Nanosci 6:703–710

    Article  CAS  Google Scholar 

  107. Rajeshkumar S, Kumar SV, Ramaiah A, Agarwal H, Lakshmi T, Roopan SM (2018) Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme Microb Technol 117:91–95

    Article  CAS  PubMed  Google Scholar 

  108. Murali M, Mahendra C, Rajashekar N, Sudarshana M, Raveesha K, Amruthesh K (2017) Antibacterial and antioxidant properties of biosynthesized zinc oxide nanoparticles from Ceropegia candelabrum L.–an endemic species, Spectrochim. Acta Part A Mol Biomol Spectrosc 179:104–109

    Article  CAS  Google Scholar 

  109. Vasantharaj S, Sathiyavimal S, Senthilkumar P, Kalpana VN, Rajalakshmi G, Alsehli M, Pugazhendhi A (2021) Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). J Environ Chem Eng 9(4):105772

    Article  CAS  Google Scholar 

  110. Zak AK, Majid WA, Mahmoudian M, Darroudi M, Yousefi R (2013) Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Advanced Powder Technology 24(3):618–624

    Article  Google Scholar 

  111. Zak AK, Yousefi R, Majid WA, Muhamad M (2012) Facile synthesis and X-ray peak broadening studies of Zn1− xMgxO nanoparticles. Ceram Int 38(3):2059–2064

    Article  Google Scholar 

  112. Gupta M, Tomar RS, Kaushik S, Mishra RK, Sharma D (2018) Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus. Front Microbiol 9:20–30

    Article  CAS  Google Scholar 

  113. Jafarirad S, Mehrabi M, Divband B, Kosari-Nasab M (2016) Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: a mechanistic approach. Mater Sci Eng C 59:296–302

    Article  CAS  Google Scholar 

  114. Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M (2017) ZnO nanoparticles via Moringa oleifera green synthesis: physical properties & mechanism of formation. Appl Surf Sci 406:339–347

    Article  CAS  Google Scholar 

  115. Hong R, Li J, Chen L, Liu D, Li H, Zheng Y, Ding J (2009) Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol 189(3):426–432

    Article  CAS  Google Scholar 

  116. Akbarian M, Mahjoub S, Elahi SM, Zabihi E, Tashakkorian H (2018) Urtica dioica L. extracts as a green catalyst for the biosynthesis of zinc oxide nanoparticles: characterization and cytotoxic effects on fibroblast and MCF-7 cell lines. New J Chem 42(8):5822–5833

    Article  CAS  Google Scholar 

  117. Elizabeth V, Mary G (2015) Green synthesis of zinc oxide nanoparticles. Int J Adv Res Sci Eng 4(1):307–314

    Google Scholar 

  118. Sai SV, Tatsugi J, Shin PK, Santhakumar K (2017) Facile biosynthesis, characterization, and solar assisted photocatalytic effect of ZnO nanoparticles mediated by leaves of L. speciosa. J Photochem Photobiol B Biol 167:89–98

    Article  Google Scholar 

  119. Yuvakkumar R, Suresh J, Saravanakumar B, Nathanael AJ, Hong SI, Rajendran V (2015a) Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc 137:250–258

    Article  CAS  PubMed  Google Scholar 

  120. Li Z, Zhou Z, Yun G, Shi K, Lv X, Yang B (2013) High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res Lett 8(1):473

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nava O, Soto-Robles C, Gómez-Gutiérrez C, Vilchis-Nestor A, Castro-Beltrán A, Olivas A, Luque P (2017) Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J Mol Struct 1147:1–6

    Article  CAS  Google Scholar 

  122. Sachudanandam N, Shakila D, Geetha K, Dinesh Karthik A (2017) Novel green synthesis of zinc oxide nanoparticles & study of its in vitro antimicrobial activity. IOSR J Pharm 2:01–06

    Google Scholar 

  123. Vidya C, Hiremath S, Chandraprabha MN, Antonyraj ML, Gopal IV, Jain A, Bansal K (2013) Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol 1(1):118–120

    Google Scholar 

  124. Hedayati SA, Jahanbakhshi A (2017) Sub-lethal effects of nano zinc oxide (ZnO NPs) on some hematological indices of goldfish (Carassius auratus). J Environ Sci Technol 19(1):211–219

    Google Scholar 

  125. Khan GB, Akhtar N, Khan MF, Ullah Z, Tabassum S, Tedesse Z (2022) Toxicological impact of zinc nano particles on tilapia fish (Oreochromis mossambicus). Saudi J Biol Sci 29(2):1221–1226

    Article  CAS  PubMed  Google Scholar 

  126. Adeyemo OK (2008) Haematological and histopathologicaleffects of Cassava Mill Effluent in Clarias gariepinus. Afr J Biotechnol 8:179–183

    Google Scholar 

  127. Kori-Siakpere O, Ubogu EO (2008) Sublethal haematologicaleffects of zinc on the freshwater fish, Heteroclariassp.(Osteichthyes: Clariidae). Afr J Biotechnol 7:2068–2073

    Article  CAS  Google Scholar 

  128. Remyla SR, Ramesh M, Sajwan KS, Kumar KS (2008) Influence of zinc on cadmium induced haematological andbiochemical responses in a freshwater teleost fish Catlacatla. Fish Physiol Biochem 34:169–174

    Article  CAS  PubMed  Google Scholar 

  129. Shah SL, Altindag A (2005) Alterations in the immunologicalparameters of Tench (Tinca tinca L. 1758) after acute andchronic exposure to lethal and sublethal treatments withmercury, cadmium and lead. Turk J Vet Anim Sci 29:1163–1168

    CAS  Google Scholar 

  130. Khabbazi M, Harsij M, Hedayati SA, Gholipoor H, Gerami MH et al (2014) Effect of CuO nanoparticles on somehematological indices of rainbow trout Oncorhynchusmykiss and their potential toxicity. Nanomed J 2:67–73

    Google Scholar 

  131. Witeska M, Kościuk B (2003) The changes in common carp blood after short-term zinc exposure. Environ Sci Pollut Res 10:284–286. https://doi.org/10.1065/espr2003.07.161

    Article  CAS  Google Scholar 

  132. Wang JJ, Sanderson BJS, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res Genet Toxicol Environ Mutagen 628(2):99–106

    Article  CAS  Google Scholar 

  133. Yousef MI, El-Demerdash FM, Radwan FME (2008) Sodium arsenite-induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem Toxicol 46(11):3506–3511

    Article  CAS  PubMed  Google Scholar 

  134. Zhang Y, Xiao X, Feng H, Nikitina MA, Zhang X, Zhao Q (2023) Stress fusion evaluation modeling and verification based on non-invasive blood glucose biosensors for live fish waterless transportation. Front. Sustain. Food Syst 7:266. https://doi.org/10.3389/fsufs.2023.1172522

    Article  Google Scholar 

  135. Javanshir Khoei A (2021) Evaluation of potential immunotoxic effects of iron oxide nanoparticles (IONPs) on antioxidant capacity, immune responses, and tissue bioaccumulation in common carp (Cyprinus carpio). Comp Biochem Physiol C Toxicol Pharmacol 244:109005

    Article  Google Scholar 

  136. Afaghi A et al (2007) Effects of copper sulfate (CuSO4) on the levels of glucose and cortisol in common carp, Cyprinus carpio. Pak J Biol Sci 10(10):1655–1660

    Article  CAS  PubMed  Google Scholar 

  137. Kumar N, Krishnani KK, Singh NP (2018b) Effect of dietary zincnanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biol Trace Elem Res 186:267–278. https://doi.org/10.1007/s12011-018-1285-2

    Article  CAS  PubMed  Google Scholar 

  138. Ates M et al (2015) Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus). Environ Toxicol 30(1):119–128

    Article  CAS  PubMed  Google Scholar 

  139. Khan MS et al (2017) Eco-friendly synthesis of silver nanoparticles through economical methods and assessment of toxicity through oxidative stress analysis in the labeo rohita. Biol Trace Elem Res 176(2):416–428

    Article  CAS  PubMed  Google Scholar 

  140. Selvaraj V et al (2013) Arsenic trioxide (As2O3) induces apoptosis and necrosis mediated cell death through mitochondrial membrane potential damage and elevated production of reactive oxygen species in PLHC-1 fish cell line. Chemosphere 90(3):1201–1209

    Article  CAS  PubMed  Google Scholar 

  141. Ramaiah SK (2007) A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem Toxicol 45(9):1551–1557

    Article  CAS  PubMed  Google Scholar 

  142. Lavanya S et al (2011) Hematological, biochemical, and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere 82(7):977–985

    Article  CAS  PubMed  Google Scholar 

  143. Guardiola FA, Cuesta A, Abellán E, Meseguer J, Esteban MA (2014) Comparative analysis of the humoral immunity of skin mucus from several marine teleost fish. Fish Shellfish Immunol 40:24–31

    Article  CAS  PubMed  Google Scholar 

  144. Hoseinifar SH, Shakouri M, Yousefi S, Van Doan H, Shafiei S, Yousefi M, Mazandarani M, Torfi Mozanzadeh M, Tulino MG, Faggio C (2020) Humoral and skin mucosal immune parameters, intestinal immune related genes expression and antioxidant defense in rainbow trout (Oncorhynchus mykiss) fed olive (Olea europea L.) waste. Fish Shellfish Immunol 100:171–178

    Article  CAS  PubMed  Google Scholar 

  145. Rashidian G, Kajbaf K, Prokić MD, Faggio C (2020) Extract of common mallow (Malvae sylvestris) enhances growth, immunity, and resistance of rainbow trout (Oncorhynchus mykiss) fingerlings against Yersinia ruckeri infection. Fish Shellfish Immunol 96:254–261

    Article  CAS  PubMed  Google Scholar 

  146. Ates M, Demir V, Arslan Z, Kaya H, Yılmaz S, Camas M (2016) Chronic exposure of tilapia (Oreochromis niloticus) to iron oxide nanoparticles: effects of particle morphology on accumulation, elimination, hematology and immune responses. Aquat Toxicol 177:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kaya H, Aydin F, Gürkan M, Yilmaz S, Ates M, Demir V, Arslan Z (2016) A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere 144:571–582

    Article  CAS  PubMed  Google Scholar 

  148. Wang T, Long X, Liu Z, Cheng Y, Yan S (2015) Effect of copper nanoparticles and copper sulphate on oxidation stress, cell apoptosis and immune responses in the intestines of juvenile Epinephelus coioides. Fish Shellfish Immunol 44:674–682

    Article  CAS  PubMed  Google Scholar 

  149. Jiang J, Pi J, Cai J (2018) The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018:1062562

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kumar V, Sharma N, Maitra SS (2017) In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 7:243–256

    Article  CAS  Google Scholar 

  151. Upadhyay PK, Jain VK, Sharma S, Shrivastav AK, Sharma R (2020) Green and chemically synthesized ZnO nanoparticles: a comparative study. In Proceedings of the IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol, UK

    Google Scholar 

  152. Cherian T, Ali K, Fatima S, Saquib Q, Ansari SM, Alwathnani HA, Al-Khedhairy AA, Al-Shaeri M, Musarrat J (2019) Myristica fragrans bio-active ester functionalized ZnO nanoparticles exhibit antibacterial and antibiofilm activities in clinical isolates. J Microbiol Methods 166:105716

    Article  CAS  PubMed  Google Scholar 

  153. Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Manickam N, Srinivasan V (2014) Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn, Macrobrachium rosenbergii. Biol Trace Elem Res 160:56–66

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research work was partially supported by Chiang Mai University, Chiang Mai, Thailand. Also, this work was partially supported by Fisheries College, Jimei University, China.

Author information

Authors and Affiliations

Authors

Contributions

HG and SV did the supervision, resources, writing—original draft of the paper. SHH, MR, MFR, HVD, and YZS performed writing—review and editing the paper. HG did the process of investigation and conceptualization. SHH and HVD had close supervision on the process of preparing paper, too. SHH and HVD did the project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hamed Ghafarifarsani or Yun-Zhang Sun.

Ethics declarations

Animal Care

All experiments were performed following the protocol accepted by the Committee of Ethics of the Faculty of Sciences, University of Tehran (357; 8 November 2000).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafarifarsani, H., Hoseinifar, S.H., Raeeszadeh, M. et al. Comparative Effect of Chemical and Green Zinc Nanoparticles on the Growth, Hematology, Serum Biochemical, Antioxidant Parameters, and Immunity in Serum and Mucus of Goldfish, Carassius auratus (Linnaeus, 1758). Biol Trace Elem Res 202, 1264–1278 (2024). https://doi.org/10.1007/s12011-023-03753-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03753-6

Keywords

Navigation