Skip to main content
Log in

Effects of Dietary Zinc on Growth, Haematological Indices, Digestive Enzyme Activity, Tissue Mineralization, Antioxidant and Immune Status of Fingerling Heteropneustes fossilis

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A 12 week feeding trial was conducted to evaluate the effects of dietary zinc levels on Heteropneustes fossilis. Triplicate groups of fish were fed isoproteic (CP; 400 g/kg) and isocaloric (GE; 17.89 kJ/g) diets increasing levels of zinc (0, 5, 10, 15, 20, 25, 30 mg/kg) achieved by supplementing zinc sulphate heptahydrate to basal diet. Analysed concentrations of zinc in diets were 10.68, 15.83, 21.34, 26.74, 30.61, 34.91 and 41.34 mg/kg. Growth indices increased linearly (P<0.05) up to 26.74 mg/kg Zn. The protein and ash content of whole body also improved significantly up to 26.74 mg/kg Zn. Whole body fat content showed inverse pattern. Haematological parameters also showed an improving trend with the increase in dietary zinc up to 26.74 mg/kg and then levelled off. Activities of antioxidant enzymes were improved with the increase in dietary zinc level up to 26.74 mg/kg followed by no significant change (P>0.05). Serum lysozyme activity also exhibited the similar pattern. Immune response in terms of the activities of lysozyme, alkaline phosphatase and myeloperoxidase was also improved with the increase in dietary zinc levels up to 26.74 mg/kg. Dietary zinc levels affected significantly the whole body as well as vertebrae mineralization. Broken-line regression analysis of weight gain, vertebrae zinc activity, serum superoxide dismutase and protease activity against increasing amounts of dietary zinc revealed that the inclusion of zinc in diet in the range of 26.82–29.84 mg/kg is optimum for growth, haematological indices, antioxidant status, immune response and tissue mineralization in fingerling H. fossilis. The information obtained from present study would be helpful in formulating the zinc-balanced commercial feeds to improve the growth and health status of this important fish, thus contributing to aquaculture production and strengthening the food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data utilized for this trial and to support the findings are available within the article.

References

  1. Giatsis C, Sipkema D, Smidt H, Heilig H, Benvenuti G, Verreth J, Verdegem M (2015) The impact of rearing environment on the development of gut microbiota in tilapia larvae. Sci Rep 5:18206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aliko V, Qirjo M, Sula E, Morina V, Faggio C (2018) Antioxidant defense system, immune response and erythron profile modulation in gold fish Carassius auratus after acute manganese treatment. Fish Shellfish Immunol 76:101–109

    Article  PubMed  Google Scholar 

  3. Liang JJ, Yang HJ, Liu YJ, Tian LX, Liang GY (2012) Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquac Nutr 18:380–387

    Article  CAS  Google Scholar 

  4. Lin S, Lin X, Yang Y, Li F, Luo L (2013) Comparison of chelated zinc and zinc sulfate as zinc sources for growth and immune response of shrimp (Litopenaeus vannamei). Aquaculture 406–407:79–84

    Article  Google Scholar 

  5. Wang LG, Li EC, Qin JG, Du ZY, Yu N, Kong YQ, Chem LQ (2015) Effect of oxidized fish oil and α-tocopherol on growth, antioxidation status, serum immune enzyme activity and resistance to Aeromonas hydrophila challenge of Chinese mitten crab Eriocheir Sinensis. Aquac Nutr 21:414–424

    Article  CAS  Google Scholar 

  6. Li MR, Huang CH (2016) Effect of dietary zinc level on growth, enzyme activity and body trace elements of hybrid tilapia, Oreochromis niloticus× O. aureus, fed soy bean meal-based diets. Aquac Nutr 22:1320–1327

    Article  CAS  Google Scholar 

  7. Moazenzadeh K, Islami RH, Zamini A, Soltani M (2017) Dietary zinc requirement of Siberian sturgeon (Acipenser baerii, Brandt 1869) juveniles, based on the growth performance and blood parameters. Int Aquac Res 9:25–35

    Article  Google Scholar 

  8. Houng Yung C, Yu Chun C, Li Chi H, Meng Hsien C (2014) Dietary zinc requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 432:360–364

    Article  Google Scholar 

  9. Lall SP, Kaushik SJ (2021) Nutrition and metabolism of minerals in fish. Animals 11(9):2711

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yarahmadi S, Silva MS, Holme MH, Morken T, Remø S, Araujo P, Lock EJ, Waagbø R, Antony Jesu Prabhu P (2022) Impact of dietary zinc and seawater transfer on zinc status, availability, endogenous loss and osmoregulatory responses in Atlantic salmon smolt fed low fish meal feeds. Aquaculture 549:737804

    Article  Google Scholar 

  11. National Research Council (NRC) (2011) Nutrient requirements of fish and shrimp.Washington. National Academies Press, DC, p 376

    Google Scholar 

  12. Moazenzadeh K, Rajabi Islami H, Zamini A, Soltani M (2018) Effects of dietary zinc level on performance, zinc status, tissue composition and enzyme activities of juvenile Siberian sturgeon, Acipenser baerii (Brandt 1869). Aquac Nutr 24:1330–1339

    Article  CAS  Google Scholar 

  13. Trevisan R, Flesch S, Mattos JJ, Milani MR, Bainy ACD, Dafre AL (2014) Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna perna. Comp Biochem Physiol C Toxicol Pharmacol 159:22–30

    Article  CAS  PubMed  Google Scholar 

  14. Yu HR, Li LY, Shan LL, Gao J, Ma CY, Li X (2021) Effect of supplemental dietary zinc on the growth, body composition and anti-oxidant enzymes of coho salmon (Oncorhynchus kisutch) alevins. Aquac Rep 20:100744

    Article  Google Scholar 

  15. Huang F, Jiang M, Wen H, Wu F, Liu W, Tian J, Yang C (2015) Dietary zinc requirement of adult Nile tilapia (Oreochromis niloticus) fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses. Aquaculture 439:53–59

    Article  CAS  Google Scholar 

  16. Houman KM, Abasali RI, Soltani ZM, Moazenzadeh K, Islami ÁHR, Islami HR, Zamini A, Soltani M (2017) Dietary zinc requirement of Siberian sturgeon (Acipenser baerii, Brandt 1869) juveniles, based on the growth performance and blood parameters. Int Aquac Res 9:25–35

    Article  Google Scholar 

  17. Clegg MS, Keen CL, Donovan SM (1995) Zinc deficiency—induced anorexia influences the distribution of serum insulin-like growth factor—binding proteins in the rat. Metab Clin Exp 44:1495–1501

    Article  CAS  PubMed  Google Scholar 

  18. McNall AD, Etherton TD, Fosmire GJ (1995) The impaired growth induced by zinc deficiency in rats is associated with decreased expression of the hepatic insulin-like growth factor I and growth hormone receptor genes. J Nutr 125:874–879

    CAS  PubMed  Google Scholar 

  19. Ekinci D, Ceyhun SB, Aksakal E, Erdoğan O (2011) IGF and GH mRNA levels are suppressed upon exposure to micromolar concentrations of cobalt and zinc in rainbow trout white muscle. Comp Biochem Physiol C 153:336–341

    Google Scholar 

  20. Swain PS, Rao SB, Rajendran D, Dominic G, Selvaraju S (2016) Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Anim Nutr 2:134–141

    Article  PubMed  PubMed Central  Google Scholar 

  21. Colvin RA, Bush A, Volitakis I, Fontaine CP, Thomas D, Kikuchi K, Holmes WR (2008) Insights into Zn2+ homeostasis in neurons from experimental and modeling studies. Am J Physiol Cell Physiol 294:726–742

    Article  Google Scholar 

  22. Baltaci AK, Mogulkoc R, Baltaci SB (2019) Review: the role of zinc in the endocrine system. Pak J Pharm Sci 32:231–239

    CAS  PubMed  Google Scholar 

  23. Cunha TA, Vermeulen Serpa KM, Grilo EC, Leite Lais L, NetoJ B, Vale SHL (2022) Association between zinc and body composition: an integrative review. J Trace Elem Med Biol 71:126940

    Article  CAS  PubMed  Google Scholar 

  24. Buentello JA, Goff JB, Gatlin DM (2009) Dietary zinc requirement of hybrid striped bass, Morone chrysops × Morone saxatilis, and bioavailability of two chemically different zinc Compounds. J World Aquacult Soc 40:687–694

    Article  Google Scholar 

  25. Maage A, Julshamn K (1993) Assessment of zinc status in juvenile Atlantic salmon (Salmo salar) by measurement of whole body and tissue levels of zinc. Aquaculture 117:179–191

    Article  CAS  Google Scholar 

  26. Luo Z, Taz XY, Zheng JL, Chen QL, Liu X (2011) Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses. Aquaculture 319:150–155

    Article  CAS  Google Scholar 

  27. Abdel-Latif HMR, Abdel-Tawwab M, Khafaga AF, Dawood MAO (2020) Dietary origanum essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio L.) to Aeromonas hydrophila infection. Fish Shellfish Immunol 104:1–7

    Article  CAS  PubMed  Google Scholar 

  28. Farhat Khan MA (2017) Growth, feed conversion and body composition of fingerling stinging catfish Heteropneustes fossilis (Bloch) fed varying levels of dietary l-threonine. Aquac Res 48:2355–2368

    Article  Google Scholar 

  29. Zafar N, Khan MA (2019) Growth, feed utilization, mineralization and antioxidant response of stinging catfish Heteropneustes fossilis fed diets with different levels of manganese. Aquaculture 509:120–128

    Article  CAS  Google Scholar 

  30. Zafar N, Khan MA (2020) Effects of dietary iron on growth, haematology, oxidative stress and hepatic ascorbic acid concentration of stinging catfish Heteropneustes fossilis. Aquaculture 516:734642

    Article  CAS  Google Scholar 

  31. Zafar N, Khan MA (2021) Effects of dietary magnesium supplementation on growth, feed utilization, nucleic acid ratio and antioxidant status of fingerling Heteropneustes fossilis. Animal Feed Sci Tech 273:114819

    Article  CAS  Google Scholar 

  32. Puvaneswari S, Marimuthu K, Karuppasamy R, Haniffa MA (2009) Early embryonic and larval development of Indian catfish, Heteropneustes fossilis. Euras J Bios 3:84–96

    Article  Google Scholar 

  33. Vijayakumar C, Shridhar S, Haniffa MA (1998) Low cost breeding and hatching techniques of catfish (Heteropneustes fossilis) for small scale farmers. Naga 21:15–17

    Google Scholar 

  34. Haniffa MA, Shridhar S (2002) Induced spawning of spotted murrel (Channa punctatus) and catfish (Heteropneustes fossilis) using human chorionic gonadotropin and synthetic hormone (ovaprim). J Vet Arch 72:51–56

    CAS  Google Scholar 

  35. Zafar N, Khan MA (2018) Determination of dietary phosphorus requirement of stinging catfish Heteropneustes fossilis based on feed conversion, growth, vertebrae phosphorus, whole body phosphorus, haematology and antioxidant status. Aquac Nutr 24:1577–1586

    Article  CAS  Google Scholar 

  36. Siddiqui TQ, Khan MA (2009) Effects of dietary protein levels on growth, feed utilisation protein deposition efficiency and body composition of young Heteropneusteus fossilis (Bloch). Fish Physiol Biochem 35:479–488

    Article  CAS  PubMed  Google Scholar 

  37. Mohamed SJ, Ibrahim A (2001) Quantifying the dietary niacin requirement of the Indian catfish, Heteropneustes fossilis (Bloch) fingerlings. Aquac Res 32:157–162

    Article  CAS  Google Scholar 

  38. Farhat Khan MA (2013) Dietary L-lysine requirement of fingerling stinging catfish, Heteropneustes fossilis (Bloch) for optimizing growth, feed conversion, protein and lysine deposition. Aquac Res 44:523–533

    Article  Google Scholar 

  39. Farhat Khan MA (2014) Total sulfur amino acid requirement and cystine replacement value for fingerling stinging catfish, Heteropneustes fossilis (Bloch). Aquaculture 426-427:270–281

    Article  Google Scholar 

  40. Halver JE (2002) The vitamins. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, SanDiego, CA, pp 61–141

    Google Scholar 

  41. APHA (1992) Standard Methods for the Examination of Water and Wastewater. (21st edn). American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, DC

    Google Scholar 

  42. AOAC (2005) Official Methods of Analysis of Association of Official Analytical Chemists (AOAC) International Method 950.46, Method 920.153, Method 985.29, Method 960.39. 18. AOAC, Gaithersburg, MD, USA

    Google Scholar 

  43. Misra H, Fridovich I (1972) The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biolumin Chemilumin 247:3170

    CAS  Google Scholar 

  44. Aebi H (1984) Catalase in vitro. Methods in Enzymol 105:121–126

    Article  CAS  Google Scholar 

  45. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  46. Utley HC, Bernheim F, Hachslien PH (1967) Effects of sulfhydryl reagent on peroxidation in microsome. Arch Biochem Biophys 260:521–531

    Google Scholar 

  47. Fatima M, Ahmad I, Sayeed I, Athar M, Raisuddin S (2000) Pollutant-induced over-activation of phagocytes is concomitantly associated with peroxidative damage in fish tissues. Aquat Toxicol 49:243–250

    Article  CAS  PubMed  Google Scholar 

  48. Moore S, Stein WH (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176:367–388

    Article  CAS  PubMed  Google Scholar 

  49. Seligman AM, Nachlas MM (1963) Lipase. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Academic Press, London, pp 776–778

    Google Scholar 

  50. Bernfeld P (1955) Amylases-a and b. In: Colowick SP, Kaplan K (eds) Methods in Enzymology, vol 1. Academic Press, New York, pp 149–150

    Chapter  Google Scholar 

  51. Apines Amar MJS, Satoh S, Kiron V, Watanabe T, Aoki T (2003) Availability of supplemental amino acid chelated trace elements in diets containing tricalcium phosphate and phytate to rainbow trout Oncorhynchus mykiss. Aquaculture 225:431–444

    Article  Google Scholar 

  52. Quade MJ, Roth JA (1997) A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet Immunol Immunopathol 58:239–248

    Article  CAS  PubMed  Google Scholar 

  53. Hultmark D, Steiner H, Rasmuson T, Boman HG (1980) Insect immunity, Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106:7–16

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Wang WX (2015) Optimal dietary requirements of zinc in marine medaka Oryzias melastigma: Importance of daily net flux. Aquaculture 448:54–62

    Article  CAS  Google Scholar 

  55. Robbins KR, Saxton AM, Southern LL (2006) Estimation of nutrient requirements using broken-line regression analysis. J Anim Sci 84:155–165

    Article  Google Scholar 

  56. Ninh NX, Thissen JP, Collette L, Gerard G, Khoi HH, Ketelslegers JM (1996) Zinc supplementation increases growth and circulating insulin-like growth factor I (IGF-I) in growth-retarded Vietnamese children. Am J Clin Nutr 63:514–519

    Article  CAS  PubMed  Google Scholar 

  57. Blanchard RK, Moore JB, Green CL, Cousins RJ (2001) Modulation of intestinal gene expression by dietary zinc status: effectiveness of cDNA arrays for expression profiling of a single nutrient deficiency. PNAS 98:13507–13513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eid AE, Ghonim SI (1994) Dietary zinc requirement of fingerling Oreochromis niloticus. Aquaculture 119:259–264

    Article  CAS  Google Scholar 

  59. Ogino C, Yang GY (1978) Requirement of rainbow trout for dietary zinc. Bull Jpn Soc Sci Fish 44:1015–1018

    Article  CAS  Google Scholar 

  60. Ogino C, Yang GY (1979) Requirement of carp for dietary zinc. Bull Jpn Soc Sci Fish 45:967–969

    Article  CAS  Google Scholar 

  61. Gatlin DM, Wilson RP (1983) Dietary zinc requirement of fingerling channel catfish. J Nutr 113:630–635

    Article  CAS  PubMed  Google Scholar 

  62. McClain WR, Gatlin DM (1988) Dietary zinc requirements of Oreochromis aureus and effects of dietary calcium and phytate on zinc bioavailability. J World Aquacult Soc 19:103–108

    Article  Google Scholar 

  63. Xu Z, Dong X, Liu C (2007) Dietary Zinc requirement of juvenile cobia (Rachycentron canadum). Fisheries Sci 26:138–141

    CAS  Google Scholar 

  64. Zhou LB, Zhang W, Wang AL, Ma XL, Zhang HF, Liufu YZ (2009) Effects of dietary zinc on growth, immune response and tissue concentration of juvenile Japanese seabass Lateolabrax japonicus. Oceanologia et Limnologia Sinica/Hai Yang Yu Hu Chao 40(1):42–47

    CAS  Google Scholar 

  65. Tan LN, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2011) Growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of dietary zinc. Aquacult Nutr 17:338–345

    Article  CAS  Google Scholar 

  66. Do Carmo E, Sá MV, Pezzato LE, Ferreira Lima MMB, De Magalhães PP (2004) Optimum zinc supplementation level in Nile tilapia Oreochromis niloticus juveniles diets. Aquaculture 238:385–401

    Article  Google Scholar 

  67. Maage A, Julshamn K, Berge GE (2001) Zinc gluconate and zinc sulphate as dietary zinc sources for Atlantic salmon. Aquac Nutr 7:183–187

    Article  CAS  Google Scholar 

  68. Fountoulaki E, Morgane H, Rigos G, Antigoni V, Mente E, Sweetman J (2010) Evaluation of zinc supplementation in European sea bass (Dicentrarchus labrax) juvenile diets. Aquac Res 41:208–216

    Article  Google Scholar 

  69. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  CAS  PubMed  Google Scholar 

  70. Apines Amar MJS, Satoh S, Kiron V, Watanabe T, Aoki T (2003) Availability of supplemental amino acid chelated trace elements in diets containing tricalcium phosphate and phytate to rainbow trout Oncorhynchus mykiss. Aquaculture 225:431–444

    Article  Google Scholar 

  71. Satoh S, Takeuchi T, Watanabe T (1987) Availability to rainbow trout of zinc in white fish meal and of various zinc compounds. Nippon Suisan Gakk 53:595–599

    Article  CAS  Google Scholar 

  72. Ketola HG (1979) Influence of dietary zinc on cataracts in rainbow trout (Salmo gairdneri). J Nutr 109:965–969

    Article  CAS  PubMed  Google Scholar 

  73. Yamamoto H, Satoh S, Takeuchi T, Watanabe T (1983) Effects on rainbow trout of deletion of manganese or trace elements from fish meal diet. Nippon Suisan Gakkaishi 49:287–293

    Article  CAS  Google Scholar 

  74. Lin YH, Jiang LC, Shiau SY (2008) Dietary zinc requirements of juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. Fish Soc Taiwan 35:117–125

    CAS  Google Scholar 

  75. Wu YP, Feng L, Jiang WD, Liu Y, Jiang J, Li SH, Tang S, Kuang SY, Zhou XQ (2015) Influence of dietary zinc on muscle composition, flesh quality and muscle antioxidant status of young grass carp (Ctenopharyngodon idella Val.). Aquac Res 46:2360–2373

    Article  CAS  Google Scholar 

  76. Bai S, Lu L, Luo X, Liu B (2008) Kinetics of manganese absorption in ligated small intestinal segments of broilers. Poult Sci 87:2596–2604

    Article  CAS  PubMed  Google Scholar 

  77. Zhang HL, Sun RJ, Xu W, Zhou HH, Zhang WB, Mai KS (2016) Dietary manganese requirement of juvenile large yellow croaker Larimichthys crocea (Richardson, 1846). Aquaculture 450:74–79

    Article  CAS  Google Scholar 

  78. Beattie JH, Kwun I (2004) Horizons in nutritional science: is zinc deficiency a risk factor for atherosclerosis? Br J Nutr 91:177–181

    Article  CAS  PubMed  Google Scholar 

  79. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089

    Article  CAS  PubMed  Google Scholar 

  80. Jain RB (2014) Thyroid function and serum copper, selenium, and zinc in general U.S. population. Biol Trace Elem Res 159:87–98

    Article  CAS  PubMed  Google Scholar 

  81. Zheng JL, Luo Z, Hu W, Liu CX, Chen QL, Zhu QL, Gong Y (2015) Different effects of dietary Zn deficiency and excess on lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Aquaculture 435:10–17

    Article  CAS  Google Scholar 

  82. Kerner J, Hoppel C (2000) Fatty acid import into mitochondria. Biochem Biophys Acta 1486:1–17

    CAS  PubMed  Google Scholar 

  83. Tan BP, Mai KS (2001) Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture 192:67–84

    Article  CAS  Google Scholar 

  84. Ling J, Feng L, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2010) Effect of dietary iron levels on growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquacult Nutr 16:616–624

    Article  CAS  Google Scholar 

  85. Qian J, Xiao L, Feng K, Li W, Liao C, Zhang T, Liu J (2022) Effect of dietary protein levels on the growth, enzyme activity, and immunological status of Culter mongolicus fingerlings. PLoS One 17(2):e0263507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. García Meilan I, Ordóñez Grande B, Valentín JM, Hernández MD, García B, Fontanillas R, Gallardo MA (2016) Modulation of digestive and absorptive processes with age and/or after a dietary change in gilthead sea bream. Aquaculture 459:54–64

    Article  Google Scholar 

  87. Sobhanirad S, Naserian AA (2012) Effects of high dietary zinc concentration and zinc sources on hematology and biochemistry of blood serum in Holstein dairy cows. Anim Feed Sci Technol 177:242–246

    Article  CAS  Google Scholar 

  88. Eze JI, Ayogu LC, Abonyi FO, Eze UU (2015) The beneficial effect of dietary zinc supplementation on anaemia and immunosuppression in Trypanosoma brucei infected rats. Exp Parasitol 154:87–92

    Article  CAS  PubMed  Google Scholar 

  89. Hsieh SI, Castruita M, Malasarn D, Urzica E, Erde J, Page MD, Yamasaki H, Casero D, Pellegrini M, Merchant SS, Loo JA (2013) The proteome of copper, iron, zinc, and manganese micronutrient deficiency in Chlamydomonas reinhardtii. Mol Cell Proteomics 12:65–86

    Article  PubMed  Google Scholar 

  90. O’Dell BL, Browning JD, Reeves PG (1987) Zinc deficiency increases the osmotic fragility of rat erythrocytes. J Nutr 117:1883–1889

    Article  PubMed  Google Scholar 

  91. Nie JQ, Dong XH, Tan BP, Chi SY, Yang QH, Liu HY, Shuang Z (2016) Effects of dietary manganese sources and levels on growth performance, relative manganese bioavailability, antioxidant activities and tissue mineral content of juvenile cobia (Rachycentron canadum L). Aquac Res 47:1402–1412

    Article  CAS  Google Scholar 

  92. Huang QC, Wang EL, Dong XH, Tan BP, Chi SY, Yang QH, Zhang S, Liu HY, Yang YZ (2018) Investigations on zinc bioavailability of different sources and dietary zinc requirement in juvenile grouper Epinephelus coioides. Aquac Res 49:2763–2773

    Article  CAS  Google Scholar 

  93. Bremner I, Beattie JH (1990) Metallothionein and the trace minerals. Annu Rev Nutr 10:63–83

    Article  CAS  PubMed  Google Scholar 

  94. Mvdo CES, Pezzato LE, Mmbf L, Pdem P (2004) Optimum zinc supplementation level in Nile tilapia Oreochromis niloticus juveniles diets. Aquaculture 238:385–401

    Article  Google Scholar 

  95. Patel RN, Singh N, Shukla KK, Gundla VL, Chauhan UK (2005) Synthesis, structure and biomimetic properties of Cu(II)-Cu(II) and Cu(II)- Zn(II) binuclear complexes: possible models for the chemistry of Cu-Zn superoxide dismutase. J Inorg Biochem 99:651–663

    Article  CAS  PubMed  Google Scholar 

  96. Henriques GS, Cozzolino SMF (2001) Determination of metallothionein levels in tissues of young rats fed zinc-enriched diets. Rev Nutr 13:163–169

    Article  Google Scholar 

  97. Knox D, Cowey CB, Adron JW (1982) Effects of dietary copper and copper: zinc ratio on rainbow trout Salmo gairdneri. Aquaculture 27:111–119

    Article  CAS  Google Scholar 

  98. Wekell JC, Shearer KD, Gauglitz EJ (1986) Zinc supplementation of trout diets: tissue indicators of body zinc status. Prog Fish Cult 48:205–212

    Article  CAS  Google Scholar 

  99. Spry DJ, Hodson PV, Wood CM (1988) Relative contributions of dietary and waterborne zinc in the rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci 45:32–41

    Article  CAS  Google Scholar 

  100. Clearwater SJ, Farag AM, Meyer JS (2002) Bioavailability and toxicity of diet borne copper and zinc to fish. Comp Biochem Physiol 132:269–313

    Google Scholar 

  101. Cousins RJ, Mc Mahon RJ (2000) Integrative aspects of zinc transporters. J Nutr 130:1384

    Article  Google Scholar 

  102. Paiva CN, Bozza MT (2014) Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal 20:1000–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wu P, Liu Y, Jiang WD, Jiang J, Zhao J, Zhang YA, Zhou XQ, Feng L (2017) A comparative study on antioxidant system in fish hepatopancreas and intestine affected by choline deficiency: different change patterns of varied antioxidant enzyme genes and Nrf2 signaling factors. PLoS One 12:1–21

    Google Scholar 

  104. Wang J, Xiao J, Zhang J, Chen H, Li D, Li L, Cao J, Xie L, Luo Y (2020) Effects of dietary Cu and Zn on the accumulation, oxidative stress and the expressions of immune-related genes in the livers of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 100:198–207

    Article  CAS  PubMed  Google Scholar 

  105. Powell SR (2000) The antioxidant properties of zinc. J Nutr 130:1447–1454

    Article  Google Scholar 

  106. Feng L, Tan LN, Liu Y, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2011) Influence of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Nutr 17:875–882

    Article  Google Scholar 

  107. Jiang M, Wu F, Huan F, Wen H, Liu W, Tian J, Yang C, Wang W (2016) Effects of dietary Zn on growth performance, antioxidant responses, and sperm motility of adult blunt snout bream, Megalobrama amblycephala. Aquaculture 464:121–128

    Article  CAS  Google Scholar 

  108. Shi B, Xu F, Zhou Q, Regan MK, Betancor MB, Tocher DR, Sun M, Meng F, Jiao L, Jin M (2021) Dietary organic zinc promotes growth, immune response and antioxidant capacity by modulating zinc signaling in juvenile Pacific white shrimp (Litopenaeus vannamei). Aquacult Rep 19:100638

    Google Scholar 

  109. Hidalgo MC, Expósito A, Palma JM, Higuera M (2002) Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss). Int J Biochem Cell Biol 34:183–193

    Article  CAS  PubMed  Google Scholar 

  110. Huang QC, Wang EL, Dong XH, Tan BP, Chi SY, Yang QH, Zhang S, Liu HY, Yang YZ (2018) Investigations on zinc bioavailability of different sources and dietary zinc requirement in juvenile grouper Epinephelus coioides. Aquac Res 49:2763–2773

    Article  CAS  Google Scholar 

  111. Devasena T, Lalitha S, Padma K (2001) Lipid peroxidation, osmotic fragility and antioxidant status in children with acute post-streptococcal glomerulonephritis. Clin Chim Acta 308:155–161

    Article  CAS  PubMed  Google Scholar 

  112. Onderci M, Sahin N, Sahin K, Kilic N (2003) The antioxidant properties of chromium and zinc: in vivo effects on digestibility, lipid peroxidation, antioxidant vitamins and some minerals under a low ambient temperature. Biol Trace Elem Res 92:139–150

    Article  CAS  PubMed  Google Scholar 

  113. Kucukbay Z, Yazlak H, Sahin N, Tuzcu M, Cakmak MN, Gurdogan F, Juturu V, Sahin K (2006) Zinc picolinate supplementation decreases oxidative stress in rainbow trout (Oncorhynchus mykiss). Aquaculture 257:465–469

    Article  CAS  Google Scholar 

  114. Luo Z, Taz XY, Zheng JL, Chen QL, Liu X (2011) Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses. Aquaculture 319:150–155

    Article  CAS  Google Scholar 

  115. Swinkels JW, Kornegay ET, Zhou W, Lindemann MD Jr, Webb M, Verstegen W (1996) Effectiveness of a zinc amino acid chelate and zinc sulfate in restoring serum and soft tissue zinc concentrations when fed to zinc-depleted pigs. J Anim Sci 74:2420

    Article  CAS  PubMed  Google Scholar 

  116. Yamaguchi M (1998) Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 11:119–135

    Article  CAS  Google Scholar 

  117. Eberle J, Schindmayer S, Erben RG, Stangassinger M, Roth HP (1999) Skeletal effects of zinc deficiency in growing rats. J Trace Elem Med Biol 13:21–26

    Article  CAS  PubMed  Google Scholar 

  118. Dezfuli BS, Bosi G, DePasquale JA, Manera M, Giari L (2016) Fish innate immunity against intestinal helminths. Fish Shellfish Immunol 50:274–287

    Article  CAS  PubMed  Google Scholar 

  119. Hamidoghli A, Won S, Lee S, Lee S, Farris NW, Bai SC (2020) Nutrition and feeding of olive flounder Paralichthys olivaceus: a Review. Rev Fish Sci Aquac 28:340–357

    Article  Google Scholar 

  120. Bayarri M, Oulahal N, Degraeve P, Garshallaoui A (2014) Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. J Food Eng 131:18–25

    Article  CAS  Google Scholar 

  121. Shankar AH, Prasad AS (1998) Zinc and immune function: the bio-logical basis of altered resistance to infection. Am J Clin Nutr 68:447–463

    Article  Google Scholar 

  122. Burge EJ, Madigan DJ, Burnett LE, Burnett KG (2007) Lysozyme gene expression by hemocytes of Pacific white shrimp, Litopenaeus vannamei, after injection with Vibrio. Fish Shellfish Immunol 22L:327–339

    Article  Google Scholar 

  123. Shi B, Xu F, Zhou Q, Regan MK, Betancor MB, Tocher DR, Sun M, Meng F, Jiao L, Jin M (2021) Dietary organic zinc promotes growth, immune response and antioxidant capacity by modulating zinc signaling in juvenile Pacific white shrimp (Litopenaeus vannamei). Aquacult Rep 19:100638

    Google Scholar 

  124. Gharaei A, Khajeh M, Khosravanizadeh A, Mirdar J, Fadai R (2020) Fluctuation of biochemical, immunological, and antioxidant biomarkers in the blood of beluga (Huso huso) under effect of dietary ZnO and chitosan ZnO NPs. Fish Physiol Biochem 46:547–561

    Article  CAS  PubMed  Google Scholar 

  125. Paripatananont T, Lovell RT (1995) Chelated zinc reduces the dietary zinc requirement of channel catfish, Ictalurus punctatus. Aquaculture 133:73–82

    Article  CAS  Google Scholar 

  126. Lau D, Mollnau H, Eiserich JP, Freeman BA, Daiber A, Gehling UM (2005) Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci U S A 102:431–436

    Article  CAS  PubMed  Google Scholar 

  127. Grattendick K, Stuart R, Roberts E, Lincoln J, Lefkowitz SS, Bollen A (2002) Alveolar macrophage activation by myeloperoxidase: a model for exacerbation of lung inflammation. Am J Resp Cell Mol 26:716–722

    Article  CAS  Google Scholar 

  128. Castro R, Piazzon MC, Noya M, Leiro JM, Lamas J (2008) Isolation and molecular cloning of a fish myeloperoxidase. Mol Immunol 45:428–437

    Article  CAS  PubMed  Google Scholar 

  129. Dalmo RA, Ingebrightsen K, Bogwald J (1997) Non-specific defense mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J Fish Dis 20:241–273

    Article  CAS  Google Scholar 

  130. Jauncey K (1982) The effects of varying dietary protein level on the growth, food conversion, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture 27:43–54

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chairperson, Department of Zoology, Aligarh Muslim University, Aligarh, India for providing necessary laboratory facilities. This work was financially supported by University Grants Commission (grant no F. 53-2/2/2013(CU)).

Author information

Authors and Affiliations

Authors

Contributions

Noorin Zafar: Feeding trial; analyses; writing, original draft; funding acquisition

Mukhtar A Khan: Conceptualization, supervision; writing — editing

Corresponding author

Correspondence to Mukhtar A. Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, N., Khan, M.A. Effects of Dietary Zinc on Growth, Haematological Indices, Digestive Enzyme Activity, Tissue Mineralization, Antioxidant and Immune Status of Fingerling Heteropneustes fossilis. Biol Trace Elem Res 202, 1249–1263 (2024). https://doi.org/10.1007/s12011-023-03749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03749-2

Keywords

Navigation