Skip to main content
Log in

Zinc Oxide Nanoparticles Trigger Autophagy in the Human Multiple Myeloma Cell Line RPMI8226: an In Vitro Study

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a malignant clonal proliferative plasma cell tumor. Zinc oxide nanoparticles (ZnO NPs) are used for antibacterial and antitumor applications in the biomedical field. This study investigated the autophagy-induced effects of ZnO NPs on the MM cell line RPMI8226 and the underlying mechanism. After RPMI8226 cells were exposed to various concentrations of ZnO NPs, the cell survival rate, morphological changes, lactate dehydrogenase (LDH) levels, cell cycle arrest, and autophagic vacuoles were monitored. Moreover, we investigated the expression of Beclin 1 (Becn1), autophagy-related gene 5 (Atg5), and Atg12 at the mRNA and protein levels, as well as the level of light chain 3 (LC3). The results showed that ZnO NPs could effectively inhibit the proliferation and promote the death of RPMI8226 cells in vitro in a dose- and time-dependent manner. ZnO NPs increased LDH levels, enhanced monodansylcadaverine (MDC) fluorescence intensity, and induced cell cycle arrest at the G2/M phases in RPMI8226 cells. Moreover, ZnO NPs significantly increased the expression of Becn1, Atg5, and Atg12 at the mRNA and protein levels and stimulated the production of LC3. We further validated the results using the autophagy inhibitor 3-methyladenine (3‑MA). Overall, we observed that ZnO NPs can trigger autophagy signaling in RPMI8226 cells, which may be a potential therapeutic approach for MM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data sets used and analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

MM:

Multiple myeloma

ZnO NPs:

Zinc oxide nanoparticles

LDH:

Lactate dehydrogenase

Becn1:

Beclin 1

Atg5:

Autophagy-related gene 5

LC3:

Light chain 3

MDC:

Monodansylcadaverine

3-MA:

3-Methyladenine

PC:

Plasma cells

BM:

Bone marrow

TEM:

Transmission electron microscope

XRD:

X-ray diffraction

ANOVA:

Analysis of variance

PBMCs:

Peripheral blood mononuclear cells

References

  1. Rajkumar SV, Kumar S (2020) Multiple myeloma current treatment algorithms. Blood Cancer J 10(9):94. https://doi.org/10.1038/s41408-020-00359-2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kumar SK, Rajkumar V, Kyle RA et al (2017) Multiple myeloma. Nat Rev Dis Primers 3:17046. https://doi.org/10.1038/nrdp.2017.46

    Article  PubMed  Google Scholar 

  3. Wang S, Xu L, Feng J, Liu Y, Liu L, Wang J, Liu J, Huang X, Gao P, Lu J, Zhan S (2020) Prevalence and incidence of multiple myeloma in urban area in China: a national population-based analysis. Front Oncol 24(9):1513. https://doi.org/10.3389/fonc.2019.01513

    Article  Google Scholar 

  4. Liu W, Liu J, Song Y, Wang X, Zhou M, Wang L, Ma J, Zhu J, Union for China Leukemia Investigators of the Chinese Society of Clinical Oncology, Union for China Lymphoma Investigators of the Chinese Society of Clinical Oncology (2019) Mortality of lymphoma and myeloma in China, 2004–2017: an observational study. J Hematol Oncol 12(1):22. https://doi.org/10.1186/s13045-019-0706-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  6. Moreau P (2017) How I treat myeloma with new agents. Blood 130(13):1507–1513. https://doi.org/10.1182/blood-2017-05-743203

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez-Santamarta M, Quinet G, Reyes-Garau D, Sola B, Roué G, Rodriguez MS (2020) Resistance to the proteasome inhibitors: lessons from multiple myeloma and mantle cell lymphoma. Adv Exp Med Biol 1233:153–174. https://doi.org/10.1007/978-3-030-38266-7_6

    Article  CAS  PubMed  Google Scholar 

  8. Corre J, Munshi NC, Avet-Loiseau H (2021) Risk factors in multiple myeloma: is it time for a revision? Blood 137(1):16–19. https://doi.org/10.1182/blood.2019004309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakamura K, Smyth MJ, Martinet L (2020) Cancer immunoediting and immune dysregulation in multiple myeloma. Blood 136(24):2731–2740. https://doi.org/10.1182/blood.2020006540

    Article  CAS  PubMed  Google Scholar 

  10. Chari A, Martinez-Lopez J, Mateos MV, Bladé J, Benboubker L, Oriol A, Arnulf B, Rodriguez-Otero P, Pineiro L, Jakubowiak A, de Boer C, Wang J, Clemens PL, Ukropec J, Schecter J, Lonial S, Moreau P (2019) Daratumumab plus carfilzomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Blood 134(5):421–431. https://doi.org/10.1182/blood.2019000722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pawlyn C, Davies FE (2019) Toward personalized treatment in multiple myeloma based on molecular characteristics. Blood 133(7):660–675. https://doi.org/10.1182/blood-2018-09-825331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thorsteinsdottir S, Gislason G, Aspelund T, Sverrisdottir I, Landgren O, Turesson I, Björkholm M, Kristinsson SY (2020) Fractures and survival in multiple myeloma: results from a population-based study. Haematologica 105(4):1067–1073. https://doi.org/10.3324/haematol.2019.230011

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goodman AM, Kim MS, Prasad V (2021) Persistent challenges with treating multiple myeloma early. Blood 137(4):456–458. https://doi.org/10.1182/blood.2020009752

    Article  CAS  PubMed  Google Scholar 

  14. Li B, Xu H, Li Z, Yao M, Xie M, Shen H, Shen S, Wang X, Jin Y (2012) Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies. Int J Nanomedicine 7:187–197. https://doi.org/10.2147/IJN.S27864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077. https://doi.org/10.1517/17425247.2010.502560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bai Aswathanarayan J, Rai Vittal R, Muddegowda U (2018) Anticancer activity of metal nanoparticles and their peptide conjugates against human colon adenorectal carcinoma cells. Artif Cells Nanomed Biotechnol 46(7):1444–1451. https://doi.org/10.1080/21691401.2017.1373655

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Nayak TR, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13(10):1633–1645. https://doi.org/10.2174/1566524013666131111130058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B (2017) Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today 22(12):1825–1834. https://doi.org/10.1016/j.drudis.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  19. Guo D, Wu C, Jiang H, Li Q, Wang X, Chen B (2008) Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J Photochem Photobiol B 93(3):119–126. https://doi.org/10.1016/j.jphotobiol.2008.07.009

    Article  CAS  PubMed  Google Scholar 

  20. Tang KS (2019) The current and future perspectives of zinc oxide nanoparticles in the treatment of diabetes mellitus. Life Sci 239:117011. https://doi.org/10.1016/j.lfs.2019.117011

    Article  CAS  PubMed  Google Scholar 

  21. Lallo da Silva B, Caetano BL, Chiari-Andréo BG, Pietro RCLR, Chiavacci LA (2019) Increased antibacterial activity of ZnO nanoparticles: influence of size and surface modification. Colloids Surf B Biointerfaces 177:440–447. https://doi.org/10.1016/j.colsurfb.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  22. Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA (2012) Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine 7:845–857. https://doi.org/10.2147/IJN.S29129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sasidharan A, Chandran P, Menon D, Raman S, Nair S, Koyakutty M (2011) Rapid dissolution of ZnO nanocrystals in acidic cancer microenvironment leading to preferential apoptosis. Nanoscale 3(9):3657–3669. https://doi.org/10.1039/c1nr10272a

    Article  CAS  PubMed  Google Scholar 

  24. Li Z, Guo D, Yin X, Ding S, Shen M, Zhang R, Wang Y, Xu R (2020) Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/Caspase-9/Caspase-3 signaling pathway in vitro. Biomed Pharmacother 122:109712. https://doi.org/10.1016/j.biopha.2019.109712

    Article  CAS  PubMed  Google Scholar 

  25. Zeng X, Ju D (2018) Hedgehog signaling pathway and autophagy in cancer. Int J Mol Sci 19(8):2279. https://doi.org/10.3390/ijms19082279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu L, Chen Y, Tooze SA (2018) Autophagy pathway: cellular and molecular mechanisms. Autophagy 14(2):207–215. https://doi.org/10.1080/15548627.2017.1378838

    Article  CAS  PubMed  Google Scholar 

  27. Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534. https://doi.org/10.1038/sj.cdd.4401777

    Article  CAS  PubMed  Google Scholar 

  28. Amaravadi RK, Thompson CB (2007) The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 13(24):7271–7279. https://doi.org/10.1158/1078-0432.CCR-07-1595

    Article  CAS  PubMed  Google Scholar 

  29. Bai DP, Zhang XF, Zhang GL, Huang YF, Gurunathan S (2017) Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int J Nanomedicine 5(12):6521–6535. https://doi.org/10.2147/IJN.S140071

    Article  Google Scholar 

  30. Hackenberg S, Scherzed A, Gohla A, Technau A, Froelich K, Ginzkey C, Koehler C, Burghartz M, Hagen R, Kleinsasser N (2014) Nanoparticle-induced photocatalytic head and neck squamous cell carcinoma cell death is associated with autophagy. Nanomedicine (Lond) 9(1):21–33. https://doi.org/10.2217/nnm.13.41

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Kang Y, Yin S, Chen A, Wu J, Liang H, Shao L (2019) Key role of microtubule and its acetylation in a zinc oxide nanoparticle-mediated lysosome-autophagy system. Small. 15(25):e1901073. https://doi.org/10.1002/smll.201901073

    Article  CAS  PubMed  Google Scholar 

  32. Guo D, Wang Z, Guo L, Yin X, Li Z, Zhou M, Li T, Chen C, Bi H (2021) Zinc oxide nanoparticle-triggered oxidative stress and autophagy activation in human tenon fibroblasts. Eur J Pharmacol. 907:174294. https://doi.org/10.1016/j.ejphar.2021.174294

    Article  CAS  PubMed  Google Scholar 

  33. He G, Ma Y, Zhu Y, Yong L, Liu X, Wang P, Liang C, Yang C, Zhao Z, Hai B, Pan X, Liu Z, Liu X, Mao C (2018) Cross talk between autophagy and apoptosis contributes to ZnO nanoparticle-induced human osteosarcoma cell death. Adv Healthc Mater. 7(17):e1800332. https://doi.org/10.1002/adhm.201800332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yin X, Li Z, Lyu C, Wang Y, Ding S, Ma C, Wang J, Cui S, Wang J, Guo D, Xu R (2022) Induced effect of zinc oxide nanoparticles on human acute myeloid leukemia cell apoptosis by regulating mitochondrial division. IUBMB Life. https://doi.org/10.1002/iub.2615

    Article  PubMed  Google Scholar 

  35. Kadow S, Schumacher F, Kramer M, Hessler G, Scholtysik R, Oubari S, Johansson P, Hüttmann A, Reinhardt HC, Kleuser B, Zoratti M, Mattarei A, Szabò I, Gulbins E, Carpinteiro A (2022) Mitochondrial Kv1.3 channels as target for treatment of multiple myeloma. Cancers (Basel) 14(8):1955. https://doi.org/10.3390/cancers14081955

    Article  CAS  PubMed  Google Scholar 

  36. Jiang J, Ge H, Yang J, Qiao Y, Xu X, Geng Y (2022) CircRNA protein tyrosine phosphatase receptor type a suppresses proliferation and induces apoptosis of lung adenocarcinoma cells via regulation of microRNA-582-3p. Bioengineered 13(5):12182–12192. https://doi.org/10.1080/21655979.2022.2073319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li L, Wang H, Li H, Lu X, Gao Y, Guo X (2022) Long noncoding RNA BACE1-antisense transcript plays a critical role in Parkinson’s disease via microRNA-214-3p/Cell death-inducing p53-target protein 1 axis. Bioengineered 13(4):10889–10901. https://doi.org/10.1080/21655979.2022.2066750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jaouadi O, Limam I, Abdelkarim M et al (2021) 5,6-Epoxycholesterol isomers induce oxiapoptophagy in myeloma cells. Cancers (Basel) 13(15):3747. https://doi.org/10.3390/cancers13153747

    Article  CAS  PubMed  Google Scholar 

  39. Song Y, Yu J, Li L, Wang L, Dong L, Xi G, Lu YJ, Li Z (2022) Luteolin impacts deoxyribonucleic acid repair by modulating the mitogen-activated protein kinase pathway in colorectal cancer. Bioengineered 13(4):10998–11011. https://doi.org/10.1080/21655979.2022.2066926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li W, Zhang S, Liu J, Liu Y, Liang Q (2019) Vitamin K2 stimulates MC3T3-E1 osteoblast differentiation and mineralization through autophagy induction. Mol Med Rep 19(5):3676–3684. https://doi.org/10.3892/mmr.2019.10040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nemati S, Pazoki H, Mohammad Rahimi H et al (2021) Toxoplasma gondii profilin and tachyzoites RH strain may manipulate autophagy via downregulating Atg5 and Atg12 and upregulating Atg7. Mol Biol Rep 48(10):7041–7047. https://doi.org/10.1007/s11033-021-06667-5

    Article  CAS  PubMed  Google Scholar 

  42. Chen X, Tong G, Fan J, Shen Y, Wang N, Gong W, Hu Z, Zhu K, Li X, Jin L, Cong W, Xiao J, Zhu Z (2022) FGF21 promotes migration and differentiation of epidermal cells during wound healing via SIRT1-dependent autophagy. Br J Pharmacol 179(5):1102–1121. https://doi.org/10.1111/bph.15701

    Article  CAS  PubMed  Google Scholar 

  43. Berdiaki A, Perisynaki E, Stratidakis A, Kulikov PP, Kuskov AN, Stivaktakis P, Henrich-Noack P, Luss AL, Shtilman MM, Tzanakakis GN, Tsatsakis A, Nikitovic D (2020) Assessment of amphiphilic poly-N-vinylpyrrolidone nanoparticles’ biocompatibility with endothelial cells in vitro and delivery of an anti-inflammatory drug. Mol Pharm 17(11):4212–4225. https://doi.org/10.1021/acs.molpharmaceut.0c00667

    Article  CAS  PubMed  Google Scholar 

  44. Tsatsakis A, Stratidakis AK, Goryachaya AV, Tzatzarakis MN, Stivaktakis PD, Docea AO, Berdiaki A, Nikitovic D, Velonia K, Shtilman MI, Rizos AK, Kuskov AN (2019) In vitro blood compatibility and in vitro cytotoxicity of amphiphilic poly-N-vinylpyrrolidone nanoparticles. Food Chem Toxicol 127:42–52. https://doi.org/10.1016/j.fct.2019.02.041

    Article  CAS  PubMed  Google Scholar 

  45. Ashraf JM, Ansari MA, Fatma S, Abdullah SMS, Iqbal J, Madkhali A, Hamali AH, Ahmad S, Jerah A, Echeverria V, Barreto GE, Ashraf GM (2018) Inhibiting effect of zinc oxide nanoparticles on advanced glycation products and oxidative modifications: a potential tool to counteract oxidative stress in neurodegenerative diseases. Mol Neurobiol 55(9):7438–7452. https://doi.org/10.1007/s12035-018-0935-x

    Article  CAS  PubMed  Google Scholar 

  46. Lai L, Jiang X, Han S, Zhao C, Du T, Rehman FU, Zheng Y, Li X, Liu X, Jiang H, Wang X (2017) In vivo biosynthesized zinc and iron oxide nanoclusters for high spatiotemporal dual-modality bioimaging of Alzheimer’s disease. Langmuir 33(36):9018–9024. https://doi.org/10.1021/acs.langmuir.7b01516

    Article  CAS  PubMed  Google Scholar 

  47. Ye DX, Ma YY, Zhao W, Cao HM, Kong JL, Xiong HM, Möhwald H (2016) ZnO-based nanoplatforms for labeling and treatment of mouse tumors without detectable toxic side effects. ACS Nano 10(4):4294–4300. https://doi.org/10.1021/acsnano.5b07846

    Article  CAS  PubMed  Google Scholar 

  48. Paino IM, Goncalves JF, Souza FL, Zucolotto V (2016) Zinc oxide flower-like nanostructures that exhibit enhanced toxicology effects in cancer cells. ACS Appl Mater Interfaces. 8(48):32699–32705. https://doi.org/10.1021/acsami.6b11950

    Article  CAS  PubMed  Google Scholar 

  49. Reshma VG (2017) Mohanan PV Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells. Colloids Surf B Biointerfaces. 157:182–190. https://doi.org/10.1016/j.colsurfb.2017.05.069

    Article  CAS  Google Scholar 

  50. Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1):51–62. https://doi.org/10.1016/j.yexcr.2004.12.021

    Article  CAS  PubMed  Google Scholar 

  51. Sharma V, Singh SK, Anderson D, Tobin DJ, Dhawan A (2011) Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes. J Nanosci Nanotechnol 11(5):3782–3788. https://doi.org/10.1166/jnn.2011.4250

    Article  CAS  PubMed  Google Scholar 

  52. Kwan YP, Saito T, Ibrahim D et al (2016) Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharm Biol 54(7):1223–1236. https://doi.org/10.3109/13880209.2015.1064451

    Article  CAS  PubMed  Google Scholar 

  53. Zhao D, Sun Y, Tan Y et al (2018) Short-duration swimming exercise after myocardial infarction attenuates cardiac dysfunction and regulates mitochondrial quality control in aged mice. Oxid Med Cell Longev. 2018:4079041. https://doi.org/10.1155/2018/4079041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pandurangan M, Kim DH (2015) ZnO nanoparticles augment ALT, AST, ALP and LDH expressions in C2C12 cells. Saudi J Biol Sci 22(6):679–684. https://doi.org/10.1016/j.sjbs.2015.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang X, Tang Q, Zhang J et al (2018) Autophagy-dependent release of zinc ions is critical for acute lung injury triggered by zinc oxide nanoparticles. Nanotoxicology 12(9):1068–1091. https://doi.org/10.1080/17435390.2018.1513094

    Article  CAS  PubMed  Google Scholar 

  56. Otto T, Sicinski P (2017) Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 17(2):93–115. https://doi.org/10.1038/nrc.2016.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cervigni RI, Bonavita R, Barretta ML, Spano D, Ayala I, Nakamura N, Corda D, Colanzi A (2015) JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. J Cell Sci 128(12):2249–2260. https://doi.org/10.1242/jcs.164871

    Article  CAS  PubMed  Google Scholar 

  58. Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, Mohamad R (2017) Eco-friendly formulated zinc oxide nanoparticles: induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes (Basel) 8(10):281. https://doi.org/10.3390/genes8100281

    Article  CAS  PubMed  Google Scholar 

  59. Yin X, Li Q, Wei H, Chen N, Wu S, Yuan Y, Liu B, Chen C, Bi H, Guo D (2019) Zinc oxide nanoparticles ameliorate collagen lattice contraction in human tenon fibroblasts. Arch Biochem Biophys 15(669):1–10. https://doi.org/10.1016/j.abb.2019.05.016

    Article  CAS  Google Scholar 

  60. Siedlecka-Kroplewska K, Wozniak M, Kmiec Z (2019) The wine polyphenol resveratrol modulates autophagy and induces apoptosis in MOLT-4 and HL-60 human leukemia cells. J Physiol Pharmacol 70(6). https://doi.org/10.26402/jpp.2019.6.02

  61. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176(1–2):11–42. https://doi.org/10.1016/j.cell.2018.09.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Noda NN, Inagaki F (2015) Mechanisms of autophagy. Annu Rev Biophys 44:101–122. https://doi.org/10.1146/annurev-biophys-060414-034248

    Article  CAS  PubMed  Google Scholar 

  63. Noda NN, Fujioka Y, Hanada T, Ohsumi Y, Inagaki F (2013) Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep 14(2):206–211. https://doi.org/10.1038/embor.2012.208

    Article  CAS  PubMed  Google Scholar 

  64. Mei Y, Glover K, Su M, Sinha SC (2016) Conformational flexibility of BECN1: essential to its key role in autophagy and beyond. Protein Sci 25(10):1767–1785. https://doi.org/10.1002/pro.2984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Choubey V, Cagalinec M, Liiv J, Safiulina D, Hickey MA, Kuum M, Liiv M, Anwar T, Eskelinen EL, Kaasik A (2014) BECN1 is involved in the initiation of mitophagy: it facilitates PARK2 translocation to mitochondria. Autophagy 10(6):1105–1119. https://doi.org/10.4161/auto.28615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kimura S, Fujita N, Noda T, Yoshimori T (2009) Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol 452:1–12. https://doi.org/10.1016/S0076-6879(08)03601-X

    Article  CAS  PubMed  Google Scholar 

  67. He G, Pan X, Liu X, Zhu Y, Ma Y, Du C, Liu X, Mao C (2020) HIF-1α-mediated mitophagy determines ZnO nanoparticle-induced human osteosarcoma cell death both in vitro and in vivo. ACS Appl Mater Interfaces 12(43):48296–48309. https://doi.org/10.1021/acsami.0c12139

    Article  CAS  PubMed  Google Scholar 

  68. Altunbek M, Keleştemur S, Baran G, Çulha M (2018) Role of modification route for zinc oxide nanoparticles on protein structure and their effects on glioblastoma cells. Int J Biol Macromol 118(Pt A):271–278. https://doi.org/10.1016/j.ijbiomac.2018.06.059

    Article  CAS  PubMed  Google Scholar 

  69. Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7(2):184–192. https://doi.org/10.1016/j.nano.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  70. Mahmoud MAM, Yahia D, Abdel-Magiud DS, Darwish MHA, Abd-Elkareem M, Mahmoud UT (2021) Broiler welfare is preserved by long-term low-dose oral exposure to zinc oxide nanoparticles: preliminary study. Nanotoxicology 15(5):605–620. https://doi.org/10.1080/17435390.2021.1905099

    Article  CAS  PubMed  Google Scholar 

  71. Hassan HF, Mansour AM, Abo-Youssef AM, Elsadek BE, Messiha BA (2017) Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clin Exp Pharmacol Physiol 44(2):235–243. https://doi.org/10.1111/1440-1681.12681

    Article  CAS  PubMed  Google Scholar 

  72. RahimiKalateh Shah Mohammad G, Seyedi SMR, Karimi E, Homayouni-Tabrizi M (2019) The cytotoxic properties of zinc oxide nanoparticles on the rat liver and spleen, and its anticancer impacts on human liver cancer cell lines. J Biochem Mol Toxicol. 33(7):e22324. https://doi.org/10.1002/jbt.22324

    Article  CAS  Google Scholar 

  73. Tanino R, Amano Y, Tong X, Sun R, Tsubata Y, Harada M, Fujita Y, Isobe T (2020) Anticancer activity of ZnO nanoparticles against human small-cell lung cancer in an orthotopic mouse model. Mol Cancer Ther 19(2):502–512. https://doi.org/10.1158/1535-7163.MCT-19-0018

    Article  CAS  PubMed  Google Scholar 

  74. Miao YH, Mao LP, Cai XJ, Mo XY, Zhu QQ, Yang FT, Wang MH (2021) Zinc oxide nanoparticles reduce the chemoresistance of gastric cancer by inhibiting autophagy. World J Gastroenterol 27(25):3851–3862. https://doi.org/10.3748/wjg.v27.i25.3851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mahdizadeh R, Homayouni-Tabrizi M, Neamati A, Seyedi SMR, TavakkolAfshari HS (2019) Green synthesized-zinc oxide nanoparticles, the strong apoptosis inducer as an exclusive antitumor agent in murine breast tumor model and human breast cancer cell lines (MCF7). J Cell Biochem 120(10):17984–17993. https://doi.org/10.1002/jcb.29065

    Article  CAS  PubMed  Google Scholar 

  76. Pan X, He G, Hai B, Liu Y, Bian L, Yong L, Zhang H, Yang C, Du C, Mao T, Ma Y, Jia F, Dou X, Zhai S, Liu X (2021) VPS34 regulates dynamin to determine the endocytosis of mitochondria-targeted zinc oxide nanoparticles in human osteosarcoma cells. J Mater Chem B 9(11):2641–2655. https://doi.org/10.1039/d1tb00226k

    Article  CAS  PubMed  Google Scholar 

  77. Raajshree RK, Brindha D (2018) In vivo anticancer activity of biosynthesized zinc oxide nanoparticle using Turbinaria conoides on a Dalton’s lymphoma ascites mice model. J Environ Pathol Toxicol Oncol 37(2):103–115. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018025086

    Article  PubMed  Google Scholar 

  78. Sayed HM, Said MM, Morcos NYS, El Gawish MA, Ismail AFM (2021) Antitumor and radiosensitizing effects of zinc oxide-caffeic acid nanoparticles against solid Ehrlich carcinoma in female mice. Integr Cancer Ther. 20:15347354211021920. https://doi.org/10.1177/15347354211021920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawano Y, Moschetta M, Manier S et al (2015) Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev 263(1):160–172. https://doi.org/10.1111/imr.12233

    Article  PubMed  Google Scholar 

  80. Manier S, Sacco A, Leleu X, Ghobrial IM, Roccaro AM (2012) Bone marrow microenvironment in multiple myeloma progression. J Biomed Biotechnol. 2012:157496. https://doi.org/10.1155/2012/157496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rajkumar SV (2016) Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 91(7):719–734. https://doi.org/10.1002/ajh.24402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu S, De Veirman K, De Becker A, Vanderkerken K, Van Riet I (2018) Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia 32(7):1500–1514. https://doi.org/10.1038/s41375-018-0061-9

    Article  PubMed  PubMed Central  Google Scholar 

  83. Terpos E, Ntanasis-Stathopoulos I, Gavriatopoulou M, Dimopoulos MA (2018) Pathogenesis of bone disease in multiple myeloma: from bench to bedside. Blood Cancer J 8(1):7. https://doi.org/10.1038/s41408-017-0037-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (81974547) and the Natural Science Foundation of Shandong Province (ZR2019PH018, ZR2020KH023).

Author information

Authors and Affiliations

Authors

Contributions

Zonghong Li: conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft. Xuewei Yin: conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft. Chunyi Lyu: software, supervision, validation. Jingyi Wang: data curation, investigation, methodology. Kui Liu: investigation, methodology, validation. Siyuan Cui: investigation, methodology, validation. Shumin Ding: investigation, validation. Yingying Wang: investigation, visualization. Jinxin Wang: investigation, visualization. Dadong Guo: conceptualization, resources, supervision, writing—review and editing. Ruirong Xu: conceptualization, funding acquisition, project administration, writing—review & editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Dadong Guo or Ruirong Xu.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

All listed authors have actively participated in the study and have read and approved the submitted manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. ZnO NPs effectively inhibited the proliferation of human MM RPMI8226 cells in vitro.

2. ZnO NPs enhanced Becn1, Atg5, Atg12, and LC3 expression in human MM RPMI8226 cells.

3. ZnO NPs trigger the autophagy signaling pathway in human MM RPMI8226 cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yin, X., Lyu, C. et al. Zinc Oxide Nanoparticles Trigger Autophagy in the Human Multiple Myeloma Cell Line RPMI8226: an In Vitro Study. Biol Trace Elem Res 202, 913–926 (2024). https://doi.org/10.1007/s12011-023-03737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03737-6

Keywords

Navigation