Skip to main content
Log in

Metal(loid)s Profile of Four Traditional Ethiopian Teff Brands: Geographic Origin Discrimination

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Among the most renowned Ethiopian food crops, teff (Eragrostis tef (Zucc.)Trotter) is the most nutritious and gluten-free cereal. Because of the increase in demand for teff, it is necessary to establish geographic origin authentication of traditional teff brands based on multi-element fingerprint. For this purpose, a total of 60 teff samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Accuracy of the laboratory procedure was verified by the analysis of rice flour standard reference material (NIST SRM 1568b). In this context, four traditional teff brands (Ada’a, Ginchi, Gojam and Tulu Bolo) were analytically characterized using multi-element fingerprint and further treated statistically using linear discriminant analysis (LDA). Due to obvious extrinsic Fe, Al and V contamination, these elements were excluded from the discriminant model. Five elements (Cu, Mo, Se, Sr, and Zn) significantly contributed to discriminate the geographical origin of white teff. On the other hand, Mn, Mo, Se and Sr were used as discriminant variables for brown teff. LDA revealed 90 and 100% correct classifications for white and brown teff, respectively. Overall, multi-element fingerprint coupled with LDA can be considered a suitable tool for geographic origin discrimination of traditional teff brands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All relevant data and material are visible in the manuscript and the supporting information.

References

  1. Bultosa G, Taylor JRN (2004) Paste and gel properties and in vitro digestibility of tef [Eragrostis tef (Zucc). Trotter] starch. Starch/ Stärke 56:20–22

    Article  CAS  Google Scholar 

  2. Zhu F (2018) Chemical composition and food uses of teff (Eragrostis tef). Food Chem 239:402–415

    Article  CAS  PubMed  Google Scholar 

  3. Jifar H, Assefa K, Tadele Z (2015) Grain yield variation and association of major traits in brown-seeded genotypes of tef [Eragrostis tef (Zucc.) Trotter]. Agric Food Secur 4(1):1–9

    Article  Google Scholar 

  4. Minten B, Tamru S, Engida E, Kuma T (2013) Ethiopia’s value chains on the move: the case of tef. Ethiopia Strategy Support Program (Working Paper 52), Addis Ababa, Ethiopia

  5. Fikadu A, Wedu TD, Derseh E (2019) Review on economics of teff in Ethiopia. Biostat Bioinform 2(3):1–8

    Google Scholar 

  6. QSAE (2001) The Quality and Standards Authority of Ethiopia. Ethiopian standard for grading of tef grain (Eragrostis tef). ES 671, Addis Ababa, Ethiopia

    Google Scholar 

  7. Alemu D, Atilaw A, Ferede S (2011) The Tef Seed System: Challenges & Opportunities. Tef Improvement. 291

  8. Assefa K, Yu JK, Zeid M, Belay G, Tefera H, Sorrells ME (2011) Breeding tef [Eragrostis tef (Zucc.) Trotter]: conventional and molecular approaches. Plant Breed 130(1):1–9

    Article  CAS  Google Scholar 

  9. Hager AS, Lauck F, Zannini E, Arendt EK (2012) Development of gluten-free fresh egg pasta based on oat and teff flour, vol 235. European Food Research and Technology, pp 861–871

  10. Gebremariam MM, Zarnkow M, Becker T (2014) Teff (Eragrostis tef) as a raw material for malting, brewing and manufacturing of gluten-free foods and beverages: a review. J Food Sci Technol 51:2881–2895

    Article  CAS  PubMed  Google Scholar 

  11. Kahlon TS, Chiu MCM (2015) Teff, buckwheat, quinoa and amaranth: ancient whole grain gluten-free egg-free pasta. Food Sci Nutr 6(15):1460

    CAS  Google Scholar 

  12. Tridge Intelligence (2021) https://www.tridge.com/intelligences/teff/US. (Accessed on 20 December, 2022)

  13. Pepi S, Vaccaro C (2018) Geochemical fingerprints of “Prosecco” wine based on major and trace elements. Environ Geochem Health 40:833–847

    Article  CAS  PubMed  Google Scholar 

  14. Centonze V, Lippolis V, Cervellieri S, Damascelli A, Casiello G, Pascale M, Logrieco AF, Longobardi F (2019) Discrimination of geographical origin of oranges (Citrus sinensis L. Osbeck) by mass spectrometry-based electronic nose and characterization of volatile compounds. Food Chem 277:25–30

    Article  CAS  PubMed  Google Scholar 

  15. Naccarato A, Furia E, Sindona G, Tagarelli A (2016) Multivariate class modeling techniques applied to multielement analysis for the verification of the geographical origin of chili pepper. Food Chem 206:217–222

    Article  CAS  PubMed  Google Scholar 

  16. Cuevas FJ, Moreno-Rojas JM, Ruiz-Moreno MJ (2017) Assessing a traceability technique in fresh oranges (Citrus sinensis L. Osbeck) with an HS-SPME-GC-MS method. Towards a volatile characterisation of organic oranges. Food Chem 221:1930–1938

    Article  CAS  PubMed  Google Scholar 

  17. Bacher F, Aguzzoni A, Chizzali S, Pignotti E, Puntscher H, Zignale P, Voto G, Tagliavini M, Tirler W, Robatscher P (2023) Geographic tracing of cereals from South Tyrol (Italy) and neighboring regions via 87Sr/86Sr isotope analysis. Food Chem 405:134890

    Article  CAS  PubMed  Google Scholar 

  18. Zhi L, Yuan W, Yudi H, Weixing Z, Ming M, Wei L, Bin L, Guiyuan M (2023) Multi-stable isotope and multi-element origin traceability of rice from the main producing regions in Asia: a long-term investigation during 2017–2020. Food Chem135417.

  19. Zhao H, Guo B, Wei Y, Zhang B, Sun S, Zhang L, Yan J (2011) Determining the geographic origin of wheat using multielement analysis and multivariate statistics. J Agri Food Chem 59(9):4397–4402

    Article  CAS  Google Scholar 

  20. Beltrán M, Sánchez-Astudillo M, Aparicio R, García-González DL (2015) Geographical traceability of virgin olive oils from south-western Spain by their multi-elemental composition. Food Chem 169:350–357

    Article  PubMed  Google Scholar 

  21. Hika WA, Atlabachew M, Amare M (2023) Geographical origin discrimination of ethiopian sesame seeds by elemental analysis and chemometric tools. Food Chem: X 17:100545

    CAS  PubMed  Google Scholar 

  22. Zunin P, Boggia R, Salvadeo P, Evangelisti F (2005) Geographical traceability of West Liguria extravirgin olive oils by the analysis of volatile terpenoid hydrocarbons. J Chromatogr A 1089(1–2):243–249

    Article  CAS  PubMed  Google Scholar 

  23. Nescatelli R, Bonanni RC, Bucci R, Magrì AL, Magrì AD, Marini F (2014) Geographical traceability of extra virgin olive oils from Sabina PDO by chromatographic fingerprinting of the phenolic fraction coupled to chemometrics. Chemometr Intell Lab Syst 139:175–180

    Article  CAS  Google Scholar 

  24. Tres A, Heenan SP, van Ruth S (2014) Authentication of dried distilled grain with solubles (DDGS) by fatty acid and volatile profiling. LWT-Food Sci TechnoL 59(1):215–221

    Article  CAS  Google Scholar 

  25. García-Cañas V, Simó C, Herrero M, Ibáñez E, Cifuentes A (2012) Present and future challenges in food analysis: foodomics. Anal Chem 84:10150–10159

    Article  PubMed  Google Scholar 

  26. Villano C, Lisanti MT, Gambuti A, Vecchio R, Moio L, Frusciante L, Aversano R, Carputo D (2017) Wine varietal authentication based on phenolics, volatiles and DNA markers: state of the art, perspectives and drawbacks. Food Control 80:1–10

    Article  CAS  Google Scholar 

  27. Rapisarda P, Camin F, Fabroni S, Perini M, Torrisi B, Intrigliolo F (2010) Influence of different organic fertilizers on quality parameters and the δ15N, δ13C, δ2H, δ34S, and δ18O values of orange fruit (Citrus sinensis L. Osbeck). J Agri Food Chem 58(6):3502–3506

    Article  CAS  Google Scholar 

  28. Liu X, Liu Z, Qian Q, Song W, Rogers KM, Rao Q, Wang S, Zhang Q, Shao S, Tian M, Song W (2021) Isotope chemometrics determines farming methods and geographical origin of vegetables from Yangtze River Delta Region, China. Food Chem 342:128379

    Article  CAS  PubMed  Google Scholar 

  29. Gaiad JE, Hidalgo MJ, Villafañe RN, Marchevsky EJ, Pellerano RG (2016) Tracing the geographical origin of argentinean lemon juices based on trace element profiles using advanced chemometric techniques. Microchem J 129:243–248

    Article  CAS  Google Scholar 

  30. Ma G, Zhang Y, Zhang J, Wang G, Chen L, Zhang M, Liu T, Liu X, Lu C (2016) Determining the geographical origin of chinese green tea by linear discriminant analysis of trace metals and rare earth elements: taking Dongting Biluochun as an example. Food Control 59:714–720

    Article  CAS  Google Scholar 

  31. Luo R, Jiang T, Chen X, Zheng C, Liu H, Yang J (2019) Determination of geographic origin of chinese mitten crab (Eriocheir sinensis) using integrated stable isotope and multi-element analyses. Food Chem 274:1–7

    Article  CAS  PubMed  Google Scholar 

  32. Barbosa RM, de Paula ES, Paulelli AC, Moore AF, Souza JMO, Batista BL, Campiglia AD, Barbosa F Jr (2016) Recognition of organic rice samples based on trace elements and support vector machines. J Food Comp Anal 45:95–100

    Article  CAS  Google Scholar 

  33. Chung IM, Kim JK, Lee KJ, Park SK, Lee JH, Son NY, Jin YI, Kim SH (2018) Geographic authentication of asian rice (Oryza sativa L.) using multi-elemental and stable isotopic data combined with multivariate analysis. Food Chem 240:840–849

    Article  CAS  PubMed  Google Scholar 

  34. Aceto M (2016) The use of ICP-MS in food traceability. Advances in food traceability techniques and technologies. Woodhead Publishing, pp 137–164

  35. Mehari B, Redi-Abshiro M, Chandravanshi BS, Combrinck S, McCrindle R (2016) Characterization of the cultivation region of ethiopian coffee by elemental analysis. Anal Lett 49(15):2474–2489

    Article  CAS  Google Scholar 

  36. Worku M, Upadhayay HR, Latruwe K, Taylor A, Blake W, Vanhaecke F, Duchateau L, Boeckx P (2019) Differentiating the geographical origin of ethiopian coffee using XRF-and ICP-based multi-element and stable isotope profiling. Food Chem 290:295–307

    Article  CAS  PubMed  Google Scholar 

  37. Endaye M, Atlabachew M, Mehari B, Alemayehu M, Mengistu DA, Kerisew B (2020) Combining multi-element analysis with statistical modeling for tracing the origin of green coffee beans from Amhara region, Ethiopia. Biol Trace Elem Res 195:669–678

    Article  CAS  PubMed  Google Scholar 

  38. Abebe Y, Bogale A, Hambidge KM, Stoecker BJ, Bailey K, Gibson RS (2007) Phytate, zinc, iron and calcium content of selected raw and prepared foods consumed in rural Sidama, Southern Ethiopia, and implications for bioavailability. J Food Comp Anal 20(3–4):161–168

    Article  CAS  Google Scholar 

  39. Dame ZT (2020) Analysis of major and trace elements in teff (Eragrostis tef). J King Saud Univ Sci 32(1):145–148

    Article  Google Scholar 

  40. Nyachoti S, Adebayo S, Godebo TR (2021) Elemental composition of teff (a gluten-free grain), maize and wheat: staple crops in the Main Ethiopian Rift Valley. J Food Comp Anal 100:103660

    Article  CAS  Google Scholar 

  41. Di Ghionno L, Sileoni V, Marconi O, De Francesco G, Perretti G (2017) Comparative study on quality attributes of gluten-free beer from malted and unmalted teff [Eragrostis tef (zucc.) Trotter]. Lwt 84:746–752

    Article  Google Scholar 

  42. Güngörmüşler M, Başınhan İ, Üçtuğ FG (2020) Optimum formulation determination and carbon footprint analysis of a novel gluten-free pasta recipe using buckwheat, teff, and chickpea flours. J Food Process Preserv 44(9):14701

    Article  Google Scholar 

  43. USEPA (1996) Method 3050B: acid digestion of sediments, sludges, soils. Revision 2. USEPA

  44. Filippini T, Tancredi S, Malagoli C, Cilloni S, Malavolti M, Violi F, Vescovi L, Bargellini A, Vinceti M (2019) Aluminum and tin: food contamination and dietary intake in an italian population. J Trace Elem Med Biol 52:293–301

    Article  CAS  PubMed  Google Scholar 

  45. Zhengmiao X, Minghong W, Zhiming Y (2002) Mechanisms for Aluminium Uptake and Accumulation by Aluminum Excluders and Hyperaccumulators. Acta Ecol Sin 22(10):1653–1659

    Google Scholar 

  46. Koubová E, Sumczynski D, Šenkárová L, Orsavová J, Fišera M (2018) Dietary intakes of minerals, essential and toxic trace elements for adults from Eragrostis tef L.: a nutritional assessment. Nutrients 10(4):479

    Article  PubMed  PubMed Central  Google Scholar 

  47. Teklu D (2017) The unresolved wonder on contaminant iron bioavailability: the way forward. Nutr Food Sci 5(2):1–5

    Google Scholar 

  48. Shumoy H, Raes K (2021) Dissecting the facts about the impact of contaminant iron in human nutrition: a review. Trends Food Sci Technol 116:918–927

    Article  CAS  Google Scholar 

  49. Baye K (2014) Teff: nutrient composition and health benefits, vol 67. Intl Food Policy Res Inst

  50. COMMISSION REGULATION (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. 02006R1881 -EN-28.07.2017-021.001-1. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1881-20170728&qid = 1512388911628&from = EN (accessed January 05, 2023)

  51. FSSAI Manual for food safety, 17th Edition (2017) (THE FOOD SAFETY AND STANDARDS ACT, 2006)

  52. China Food and Drug Administration (2023) - National food safety standards https://gain.fas.usda.gov/Recent%20GAIN%20Publications/China%20Releases%20the%20 Standard%20for%20Levels%20of%20Contaminants%20in%20Foods%20_Beijing_ China%20-%20Peoples%20Republic%20of_5-9-2018.pdf

  53. Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Enviro Sci Technol 37(2):229–234

    Article  CAS  Google Scholar 

  54. Meharg AA, Sun G, Williams PN, Adomako E, Deacon C, Zhu YG, Feldmann J, Raab A (2008) Inorganic arsenic levels in baby rice are of concern. Environ Pollut 152(3):746–749

    Article  CAS  PubMed  Google Scholar 

  55. Chen H, Tang Z, Wang P, Zhao FJ (2018) Geographical variations of cadmium and arsenic concentrations and arsenic speciation in chinese rice. Environ Pollut 238:482–490

    Article  CAS  PubMed  Google Scholar 

  56. Bascuñán KA, Vespa MC, Araya M (2017) Celiac disease: understanding the gluten-free diet. Eur J Nutr 56:449–459

    Article  PubMed  Google Scholar 

  57. Baye K, Mouquet-Rivier C, Icard‐Vernière C, Picq C, Guyot JP (2014) Changes in mineral absorption inhibitors consequent to fermentation of ethiopian injera: implications for predicted iron bioavailability and bioaccessibility. Int J Food Sci 49(1):174–180

    Article  CAS  Google Scholar 

  58. Leykun T, Admasu S, Abera S (2020) Evaluation of the mineral content, phyto-chemicals profile and microbial quality of tef injera supplemented by fenugreek flour. J Food Sci Technol 57:2480–2489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alemneh ST, Emire SA, Hitzmann B, Zettel V (2022) Comparative study of chemical composition, pasting, thermal and functional properties of Teff (Eragrostis tef) flours grown in Ethiopia and South Africa. Int J Food Prop 25(1):144–158

    Article  CAS  Google Scholar 

  60. Kumssa DB, Mossa AW, Amede T, Ander EL, Bailey EH, Botoman L, Chagumaira C, Chimungu JG, Davis K, Gameda S, Haefele SM (2022) Cereal grain mineral micronutrient and soil chemistry data from GeoNutrition surveys in Ethiopia and Malawi. Sci Data 9(1):443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pipoyan D, Stepanyan S, Beglaryan M, Dorne JLC (2022) Risk assessment of uptake of trace elements through consumption of cereals: a pilot study in Yerevan, Armenia. J Environ Health Sci Eng 20(1):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abdu AO, Kumssa DB, Joy EJ, Groote HD, Lark RM, Broadley MR, Gashu D (2022) Estimates of Dietary Mineral Micronutrient Supply from staple cereals in Ethiopia at a District Level. Nutrients 14(17):3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bazié BSR, Compaoré MKA, Bandé M, Kpoda SD, Méda NSBR, Kangambega TMO, Ilboudo I, Sandwidi BY, Nikiema F, Yakoro A, Bassolé IHN (2022) Evaluation of metallic trace elements contents in some major raw foodstuffs in Burkina Faso and health risk assessment. Sci Rep 12(1):1–9

    Article  Google Scholar 

  64. Hassen IW, Regassa MD, Berhane G, Minten B, Taffesse AS (2018) Teff and its role in the agricultural and food economy. The economics of tef, exploring Ethiopia’s biggest cash crop. International Food Policy Research Institute (IFPRI), Washington DC, pp 11–37

    Google Scholar 

  65. Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS (2021) The double face of metals: the intriguing case of chromium. Appl Sci 11(2):638

    Article  CAS  Google Scholar 

  66. Sharma S, Agrawal RP, Choudhary M, Jain S, Goyal S, Agarwal V (2011) Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J Trace Elem Med Biol 25(3):149–153

    Article  CAS  PubMed  Google Scholar 

  67. Paiva AN, de Lima JG, de Medeiros AC, Figueiredo HA, de Andrade RL, Ururahy MA, Rezende AA, Brandão-Neto J, Almeida MDG (2015) Beneficial effects of oral chromium picolinate supplementation on glycemic control in patients with type 2 diabetes: a randomized clinical study. J Trace Elem Med Biol 32:66–72

    Article  CAS  PubMed  Google Scholar 

  68. Farrokhian A, Mahmoodian M, Bahmani F, Amirani E, Shafabakhsh R, Asemi Z (2020) The influences of chromium supplementation on metabolic status in patients with type 2 diabetes mellitus and coronary heart disease. Biol Trace Elem Res 194:313–320

    Article  CAS  PubMed  Google Scholar 

  69. Carboni J, Reed S, Kolba N, Eshel A, Koren O, Tako E (2020) Alterations in the intestinal morphology, gut microbiota, and trace mineral status following intra-amniotic administration (Gallus gallus) of teff (Eragrostis tef) seed extracts. Nutrients 12(10):3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gibson RS, Wawer AA, Fairweather-Tait SJ, Hurst R, Young SD, Broadley MR, Chilimba AD, Ander EL, Watts MJ, Kalimbira A, Bailey KB (2015) Dietary iron intakes based on food composition data may underestimate the contribution of potentially exchangeable contaminant iron from soil. J Food Compo Anal 40:19–23

    Article  CAS  Google Scholar 

  71. Cercamondi CI, Fischer MM, Worku TG, Wyss N, Herter-Aeberli I, Zimmermann MB, Egli IM, Hurrell RF (2017) The potential of fermentation and contamination of teff by soil to influence iron intake and bioavailability from injera flatbread. Int J Vitam Nutr Res 87(1–2):75–84

    Article  CAS  PubMed  Google Scholar 

  72. Muleya M, Young SD, Broadley MR, Joy EJ, Chopera P, Bailey EH (2023) Bioaccessibility of iron in pearl millet flour contaminated with different soil types. Food Chem 402:134277

    Article  CAS  PubMed  Google Scholar 

  73. Demianová A, Bobková A, Lidiková J, Jurčaga L, Bobko M, Belej Ľ, Kolek E, Poláková K, Iriondo-DeHond A, del Castillo MD (2022) Volatiles as chemical markers suitable for identification of the geographical origin of green Coffea arabica L. Food Control 136:108869

    Article  Google Scholar 

Download references

Acknowledgements

The first author (DW) acknowledges the Fulbright Visiting Scholar Program, sponsored by the United State Department of State’s Bureau of Educational and Cultural Affairs. Technical and administrative support provided by Josh Monk, Kazumasa Lindley, Carol Fimmen, Aster Yehdego, and Raven McKenzie is strongly acknowledged. We are grateful to Dr, Yohannes Misskire for the support during sample collection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Desta Woldetsadik or Douglas B Sims.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woldetsadik, D., Sims, D.B., Garner, M.C. et al. Metal(loid)s Profile of Four Traditional Ethiopian Teff Brands: Geographic Origin Discrimination. Biol Trace Elem Res 202, 1305–1315 (2024). https://doi.org/10.1007/s12011-023-03736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03736-7

Keywords

Navigation