Skip to main content
Log in

Oxidative Stress Induced by Arsenite is Involved in YTHDF2 Phase Separation

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) undergoes phase separation in response to the stimulation of high concentration of arsenite, suggesting that oxidative stress, the major mechanism of arsenite toxicity, may play a role in YTHDF2 phase separation. However, whether arsenite-induced oxidative stress is involved in phase separation of YTHDF2 has yet to be established. To explore the effect of arsenite-induced oxidative stress on YTHDF2 phase separation, the levels of oxidative stress, YTHDF2 phase separation, and N6-methyladenosine (m6A) in human keratinocytes were detected after exposure to various concentrations of sodium arsenite (0-500 µM; 1 h) and antioxidant N-acetylcysteine (0–10 mM; 2 h). We found that arsenite promoted oxidative stress and YTHDF2 phase separation in a concentration-dependent manner. In contrast, pretreatment with N-acetylcysteine significantly relieved arsenate-induced oxidative stress and inhibited YTHDF2 phase separation. As one of the key factors to YTHDF2 phase separation, N6-methyladenosine (m6A) levels in human keratinocytes were significantly increased after arsenite exposure, accompanied by upregulation of m6A methylesterase levels and downregulation of m6A demethylases levels. On the contrary, N-acetylcysteine mitigated the arsenite-induced increase of m6A and m6A methylesterase and the arsenite-induced decrease in m6A demethylase. Collectively, our study firstly revealed that oxidative stress induced by arsenite plays an important role in YTHDF2 phase separation driven by m6A modification, which provides new insights into the arsenite toxicity from the phase-separation perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data underlying this article are available in the article and supplementary information. More data are available on request from the authors.

References

  1. Alberti S, Dormann D (2019) Liquid-liquid phase separation in disease. Annu Rev Genet 53:171–194. https://doi.org/10.1146/annurev-genet-112618-043527

    Article  CAS  PubMed  Google Scholar 

  2. Peng PH, Hsu KW, Wu KJ (2021) Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Am J Cancer Res 11(8):3766–3776

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ahn JH, Davis ES, Daugird TA, Zhao S, Quiroga IY, Uryu H, Li J, Storey AJ, Tsai YH, Keeley DP et al (2021) Phase separation drives aberrant chromatin looping and cancer development. Nature 595(7868):591–595. https://doi.org/10.1038/s41586-021-03662-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brocca S, Grandori R, Longhi S, Uversky V (2021) Liquid-liquid phase separation by intrinsically disordered protein regions of viruses: roles in viral life cycle and control of virus-host interactions. Int J Mol Sci 21(23). https://doi.org/10.3390/ijms21239045

  5. Alberti S, Gladfelter A, Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176(3):419–434. https://doi.org/10.1016/j.cell.2018.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang JZ, Mehta S, Zhang J (2021) Liquid-liquid phase separation: a principal organizer of the cell’s biochemical activity architecture. Trends Pharmacol Sci 42(10):845–856. https://doi.org/10.1016/j.tips.2021.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang B, Zhang L, Dai T, Qin Z, Lu H, Zhang L, Zhou F (2021) Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 6(1):290. https://doi.org/10.1038/s41392-021-00678-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taniue K, Akimitsu N (2022) Aberrant phase separation and cancer. Febs j 289(1):17–39. https://doi.org/10.1111/febs.15765

    Article  CAS  PubMed  Google Scholar 

  9. Kang JY, Wen Z, Pan D, Zhang Y, Li Q, Zhong A, Yu X, Wu YC, Chen Y, Zhang X et al (2022) LLPS of FXR1 drives spermiogenesis by activating translation of stored mRNAs. Science 377(6607):eabj6647. https://doi.org/10.1126/science.abj6647

    Article  CAS  PubMed  Google Scholar 

  10. Carey JL, Guo L (2022) Liquid-liquid phase separation of TDP-43 and FUS in physiology and pathology of neurodegenerative diseases. Front Mol Biosci 9:826719. https://doi.org/10.3389/fmolb.2022.826719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hallegger M, Chakrabarti AM, Lee FCY, Lee BL, Amalietti AG, Odeh HM, Copley KE, Rubien JD, Portz B, Kuret K et al (2021) TDP-43 condensation properties specify its RNA-binding and regulatory repertoire. Cell 184(18):4680–4696e22. https://doi.org/10.1016/j.cell.2021.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen X, Zhou X, Wang X (2022) M(6)a binding protein YTHDF2 in cancer. Exp Hematol Oncol 11(1):21. https://doi.org/10.1186/s40164-022-00269-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai XY, Shi L, Li Z, Yang HY, Wei JF, Ding Q (2021) Main N6-methyladenosine readers: YTH family proteins in cancers. Front Oncol 11:635329. https://doi.org/10.3389/fonc.2021.635329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao M, Qi Z, Feng W, Huang H, Xu Z, Dong Z, Xu M, Han J, Kloeber JA, Huang J et al (2022) m6A demethylation of cytidine deaminase APOBEC3B mRNA orchestrates arsenic-induced mutagenesis. J Biol Chem 298(2):101563. https://doi.org/10.1016/j.jbc.2022.101563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z, Perez SP, Suganthan R, He C et al (2018) Ythdf2-mediated m(6)a mRNA clearance modulates neural development in mice. Genome Biol 19(1):69. https://doi.org/10.1186/s13059-018-1436-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao T, Sun D, Zhao M, Lai Y, Liu Y, Zhang Z (2020) N(6)-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation. Environ Pollut 259:113908. https://doi.org/10.1016/j.envpol.2019.113908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu SY, Feng Y, Wu JJ, Zou ML, Sun ZL, Li X, Yuan FL (2020) M(6)a facilitates YTHDF-independent phase separation. J Cell Mol Med 24(2):2070–2072. https://doi.org/10.1111/jcmm.14847

    Article  CAS  PubMed  Google Scholar 

  18. Ries RJ, Zaccara S, Klein P, Olarerin-George A, Namkoong S, Pickering BF, Patil DP, Kwak H, Lee JH, Jaffrey SR (2019) M(6)a enhances the phase separation potential of mRNA. Nature 571(7765):424–428. https://doi.org/10.1038/s41586-019-1374-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao Y, Pei G, Li D, Li R, Shao Y, Zhang QC, Li P (2019) Multivalent m(6)a motifs promote phase separation of YTHDF proteins. Cell Res 29(9):767–769. https://doi.org/10.1038/s41422-019-0210-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Franzmann TM, Alberti S (2019) Protein phase separation as a stress survival strategy. Cold Spring Harb Perspect Biol. 2019; 11(6). https://doi.org/10.1016/cshperspect.a034058

  21. Singh V, Xu L, Boyko S, Surewicz K, Surewicz WK (2020) Zinc promotes liquid-liquid phase separation of tau protein. J Biol Chem 295(18):5850–5856. https://doi.org/10.1074/jbc.AC120.013166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu Y, Zhuang X (2020) M(6)A-binding YTHDF proteins promote stress granule formation. Nat Chem Biol 16(9):955–963. https://doi.org/10.1101/10.1038/s41589-020-0524-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Riggs CL, Kedersha N, Ivanov P, Anderson P (2020) Mammalian stress granules and P bodies at a glance. J Cell Sci 133(16):jcs242487. https://doi.org/10.1242/jcs.242487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Youn JY, Dyakov BJA, Zhang J, Knight JDR, Vernon RM, Forman-Kay JD, Gingras AC (2019) Properties of stress granule and P-body proteomes. Mol Cell 76(2):286–294. https://doi.org/10.1016/j.molcel.2019.09.014

    Article  CAS  PubMed  Google Scholar 

  25. Meng P, Zhang S, Jiang X, Cheng S, Zhang J, Cao X, Qin X, Zou Z, Chen C (2020) Arsenite induces testicular oxidative stress in vivo and in vitro leading to ferroptosis. Ecotoxicol Environ Saf 194:110360. https://doi.org/10.1016/j.ecoenv.2020.110360

    Article  CAS  PubMed  Google Scholar 

  26. Zhao T, Li X, Sun D, Zhang Z (2019) Oxidative stress: one potential factor for arsenite-induced increase of N(6)-methyladenosine in human keratinocytes. Environ Toxicol Pharmacol 69:95–103. https://doi.org/10.1016/j.etap.2019.04.005

    Article  CAS  PubMed  Google Scholar 

  27. Yu HS, Liao WT, Chai CY (2006) Arsenic carcinogenesis in the skin. J Biomed Sci 13(5):657–666. https://doi.org/10.1007/s11373-006-9092-8

    Article  CAS  PubMed  Google Scholar 

  28. Hunt KM, Srivastava RK, Elmets CA, Athar M (2014) The mechanistic basis of arsenicosis: pathogenesis of skin cancer. Cancer Lett 354(2):211–219. https://doi.org/10.1016/j.canlet.2014.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang J, Wang L, Diao J, Shi YG, Shi Y, Ma H, Shen H (2020) Binding to m(6)a RNA promotes YTHDF2-mediated phase separation. Protein Cell 11(4):304–307. https://doi.org/10.1007/s13238-019-00660-2

    Article  PubMed  Google Scholar 

  30. Gabryelczyk B, Alag R, Philips M, Low K, Venkatraman A, Kannaian B, Shi X, Linder M, Pervushin K, Miserez A (2022) In vivo liquid-liquid phase separation protects amyloidogenic and aggregation-prone peptides during overexpression in Escherichia coli. Protein Sci 31(5):e4292. https://doi.org/10.1002/pro.4292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ranjan R, Chen X (2021) Super-resolution live cell imaging of subcellular structures. J Vis Exp 167:10. https://doi.org/10.3791/61563. .3791/61563

    Article  CAS  Google Scholar 

  32. Im K, Mareninov S, Diaz MFP, Yong WH (2019) An introduction to performing immunofluorescence staining. Methods Mol Biol 1897:299–311. https://doi.org/10.1007/978-1-4939-8935-5_26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bukhari H, Müller T (2019) Endogenous fluorescence tagging by CRISPR. Trends Cell Biol 29(11):912–928. https://doi.org/10.1016/j.tcb.2019.08.004

    Article  CAS  PubMed  Google Scholar 

  34. Koch B, Nijmeijer B, Kueblbeck M, Cai Y, Walther N, Ellenberg J (2018) Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat Protoc 13(6):1465–1487. https://doi.org/10.1038/nprot.2018.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ettinger A, Wittmann T (2014) Fluorescence live cell imaging. Methods Cell Biol 123:77–94. https://doi.org/b978-0-12-420138-5.00005-7

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu J, Cui Z (2020) Fluorescent labeling of proteins of interest in live cells: beyond fluorescent proteins. Bioconjug Chem 31(6):1587–1595. https://doi.org/10.1021/acs.bioconjchem.0c00181

    Article  CAS  PubMed  Google Scholar 

  37. Chao PL, Fan SF, Chou YH, Lin AM (2007) N-acetylcysteine attenuates arsenite-induced oxidative injury in dorsal root ganglion explants. Ann N Y Acad Sci 1122:276–288. https://doi.org/10.1196/annals.1403.020

    Article  CAS  PubMed  Google Scholar 

  38. De Flora S, Balansky R, La Maestra S (2020) Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. Faseb j 34(10):13185–13193. https://doi.org/10.1096/fj.202001807

    Article  CAS  PubMed  Google Scholar 

  39. Oerum S, Meynier V, Catala M, Tisné C (2021) A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res 49(13):7239–7255. https://doi.org/10.1093/nar/gkab378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roden C, Gladfelter AS (2021) RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 22(3):183–195. https://doi.org/10.1038/s41580-020-0264-6

    Article  CAS  PubMed  Google Scholar 

  41. Van Treeck B, Protter DSW, Matheny T, Khong A, Link CD, Parker R (2018) RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome. Proc Natl Acad Sci U S A 115(11):2734–2739. https://doi.org/10.1073/pnas.1800038115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Su Q, Mehta S, Zhang J (2021) Liquid-liquid phase separation: orchestrating cell signaling through time and space. Mol Cell 81(20):4137–4146. https://doi.org/10.1016/j.molcel.2021.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su Y, Maimaitiyiming Y, Wang L, Cheng X, Hsu CH (2021) Modulation of phase separation by RNA: a glimpse on N(6)-methyladenosine modification. Front Cell Dev Biol 9:786454. https://doi.org/10.3389/fcell.2021.786454

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hazra D, Chapat C, Graille M (2019) m6A mRNA destiny: chained to the rhYTHm by the YTH-containing proteins. Genes (Basel) 10(1). https://doi.org/10.3390/genes10010049

  45. Gao Q (2019) Oxidative stress and autophagy. Adv Exp Med Biol 1206:179–198. https://doi.org/10.1007/978-981-15-0602-4_9

    Article  CAS  PubMed  Google Scholar 

  46. Zhang X, Peng L, Dai Y, Sheng X, Chen S, Xie Q (2020) Effects of coconut water on retina in diabetic rats. Evid Based Complement Alternat Med 9450634. https://doi.org/10.1155/2020/9450634

  47. Mo Y, Feng Y, Huang W, Tan N, Li X, Jie M, Feng T, Jiang H, Jiang L (2022) Liquid-liquid phase separation in cardiovascular diseases. Cells 11(19):3040. https://doi.org/10.3390/cells11193040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ainani H, Bouchmaa N, Ben Mrid R, El Fatimy R (2023) Liquid-liquid phase separation of protein tau: an emerging process in Alzheimer’s disease pathogenesis. Neurobiol Dis 178:106011. https://doi.org/10.1016/j.nbd.2023.106011

    Article  CAS  PubMed  Google Scholar 

  49. Boyko S, Surewicz WK (2022) Tau liquid-liquid phase separation in neurodegenerative diseases. Trends Cell Biol 32(7):611–623. https://doi.org/10.1016/j.tcb.2022.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the grant from the National Natural Science Foundation of China (Grant No. 82073510) to Zunzhen Zhang.

Author information

Authors and Affiliations

Authors

Contributions

Jin Man, Qian Zhang and Zunzhen Zhang contributed to the study conception and design. Jin Man, Qian Zhang, Tianhe Zhao and Donglei Sun performed the experiments. Weilian Sun and Keyan Long provided help with the experiments and data analysis. The first draft of the manuscript was written by Jin Man and Zunzhen Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zunzhen Zhang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics approval

No application.

Consent to participate

No application.

Competing interests

The authors declare no conflict of interest.

Consent for publication

All authors have agreed to publish this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, J., Zhang, Q., Zhao, T. et al. Oxidative Stress Induced by Arsenite is Involved in YTHDF2 Phase Separation. Biol Trace Elem Res 202, 885–899 (2024). https://doi.org/10.1007/s12011-023-03728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03728-7

Keywords

Navigation