Skip to main content
Log in

Associations Between Individual and Combined Metal Exposures in Whole Blood and Kidney Function in U.S. Adults Aged 40 Years and Older

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of metal exposure on kidney function have been reported in previous literature. There is limited and inconsistent information on the associations between individual and combined exposures to metals and kidney function among the middle-aged and older population. The aim of this study was to clarify the associations of exposure to individual metals with kidney function while accounting for potential coexposure to metal mixtures and to evaluate the joint and interactive associations of blood metals with kidney function. A total of 1669 adults aged 40 years and older were enrolled in the present cross-sectional study using the 2015–2016 National Health and Nutrition Examination Survey (NHANES). Single-metal and multimetal multivariable logistic regression models, quantile G-computation, and Bayesian kernel machine regression models (BKMR) were fitted to explore the individual and joint associations of whole blood metals [lead (Pb), cadmium (Cd), mercury (Hg), cobalt (Co), manganese (Mn), and selenium (Se)] with the odds of decreased estimated glomerular filtration rate (eGFR) and albuminuria. A decreased eGFR was defined as an eGFR ≤ 60 mL/min per 1.73 m2, and albuminuria was categorized as a urinary albumin-creatinine ratio (UACR) of ≥ 30.0 mg/g. The results from quantile G-computation and BKMR indicated positive associations between exposure to the metal mixture and the prevalence of decreased eGFR and albuminuria (all P values < 0.05). These positive associations were mainly driven by blood Co, Cd, and Pb. Furthermore, blood Mn was identified as an influential element contributing to an inverse correlation with kidney dysfunction within metal mixtures. Increasing blood Se levels were negatively associated with the prevalence of decreased eGFR and positively associated with albuminuria. In addition, a potential pairwise interaction between Mn-Co on decreased eGFR was identified by BKMR analysis. Findings from our study suggested a positive association between exposure to the whole blood metal mixture and decreased kidney function, with blood Co, Pb, and Cd being the main contributors to this association, while Mn demonstrated an inverse relationship with renal dysfunction. However, as our study was cross-sectional in nature, further prospective studies are warranted to better understand the individual and combined effects of metals on kidney function.

Highlights

• Exposure to metal mixtures of cadmium (Cd), lead (Pb), mercury (Hg), manganese (Mn), cobalt (Co), and selenium (Se) positively associated with kidney dysfunction.

• Co, Cd, Pb positively associated with kidney function impairment, Mn negatively associated with kidney function impairment.

• A potential pairwise interaction between blood Mn-Co on decreased eGFR may exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets were publicly available from the NHANES Web site (https://www.cdc.gov/nchs/nhanes/index.htm).

References

  1. Stevens PE, Levin A (2012) Kidney disease: improving global outcomes chronic kidney disease guideline development work group M. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158:825–830. https://doi.org/10.7326/0003-4819-158-11-201306040-00007

  2. Murton M, Goff-Leggett D, Bobrowska A et al (2021) Burden of chronic kidney disease by KDIGO categories of glomerular filtration rate and albuminuria: a systematic review. Adv Ther 38:180–200

    Article  PubMed  Google Scholar 

  3. Funes DR, Blanco DG, Hong L et al (2022) Prevalence of chronic kidney disease and end-stage renal disease in a bariatric versus nonbariatric population: a retrospective analysis of the U.S. National Inpatient Sample database. Surg Obes Relat Dis 18:281–287. https://doi.org/10.1016/j.soard.2021.09.021

    Article  PubMed  Google Scholar 

  4. Hill NR, Fatoba ST, Oke JL et al (2016) Global prevalence of chronic kidney disease – A systematic review and meta-analysis. PLoS ONE 11:e0158765. https://doi.org/10.1371/journal.pone.0158765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bikbov B, Purcell CA, Levey AS et al (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 395:709–733. https://doi.org/10.1016/S0140-6736(20)30045-3

    Article  Google Scholar 

  6. Foreman KJ, Marquez N, Dolgert A et al (2018) Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 392:2052–2090. https://doi.org/10.1016/S0140-6736(18)31694-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Levey AS, Eckardt KU, Dorman NM et al (2020) Nomenclature for kidney function and disease: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int 97:1117–1129. https://doi.org/10.1016/j.kint.2020.02.010

    Article  PubMed  Google Scholar 

  8. Al K, Gulam M, Crispen R (2020) Prevalence and trends of chronic kidney disease and its risk factors among US adults: An analysis of NHANES 2003-18. Prev Med Rep 20:101193. https://doi.org/10.1016/j.pmedr.2020.101193

    Article  Google Scholar 

  9. Jalili C, Kazemi M, Cheng H et al (2021) Associations between exposure to heavy metals and the risk of chronic kidney disease: a systematic review and meta-analysis. Crit Rev Toxicol 51:165–182. https://doi.org/10.1080/10408444.2021.1891196

    Article  CAS  PubMed  Google Scholar 

  10. Kim NH, Hyun YY, Lee KB et al (2015) Environmental heavy metal exposure and chronic kidney disease in the general population. J Korean Med Sci 30:272–277. https://doi.org/10.3346/jkms.2015.30.3.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harari F, Sallsten G, Christensson A et al (2018) Blood lead levels and decreased kidney function in a population-based cohort. Am J Kidney Dis 72:381–389. https://doi.org/10.1053/j.ajkd.2018.02.358

    Article  CAS  PubMed  Google Scholar 

  12. Hellström L, Elinder CG, Dahlberg B et al (2001) Cadmium exposure and end-stage renal disease. Am J Kidney Dis 38:1001–1008. https://doi.org/10.1053/ajkd.2001.28589

    Article  PubMed  Google Scholar 

  13. Weaver V, Navas-Acien A, Tellez-Plaza M et al (2009) Blood cadmium and lead and chronic kidney disease in US sdults: A joint analysis. Am J Epidemiol 170:1156–1164. https://doi.org/10.1093/aje/kwp248

    Article  PubMed  PubMed Central  Google Scholar 

  14. Madrigal JM, Ricardo AC, Persky V, Turyk M (2019) Associations between blood cadmium concentration and kidney function in the U.S. population: Impact of sex, diabetes and hypertension. Environ Res 169:180–188. https://doi.org/10.1016/j.envres.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  15. Rana MN, Tangpong J, Rahman MM (2018) Toxicodynamics of Lead, Cadmium, Mercury and Arsenic- induced kidney toxicity and treatment strategy: A mini review. Toxicol Rep 5:704–713. https://doi.org/10.1016/j.toxrep.2018.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee BK, Kim Y (2012) Association of blood cadmium with hypertension in the Korean general population: Analysis of the 2008–2010 Korean national health and nutrition examination survey data. Am J Ind Med 55:1060–1067. https://doi.org/10.1002/ajim.22078

    Article  CAS  PubMed  Google Scholar 

  17. Evans M, Discacciati A, Quershi AR et al (2017) End-stage renal disease after occupational lead exposure: 20 years of follow-up. Occup Environ Med 74:396–401. https://doi.org/10.1136/oemed-2016-103876

    Article  PubMed  Google Scholar 

  18. Evans M, Fored CM, Nise G et al (2010) Occupational lead exposure and severe CKD: A population-based case-control and prospective observational cohort study in Sweden. Am J Kidney Dis 55:497–506. https://doi.org/10.1053/j.ajkd.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  19. Sommar JN, Svensson MK, Björ BM et al (2013) End-stage renal disease and low level exposure to lead, cadmium and mercury; a population-based, prospective nested case-referent study in Sweden. Environ Health 12:1–10. https://doi.org/10.1186/1476-069X-12-9

    Article  CAS  Google Scholar 

  20. Naura AS, Sharma R (2009) Toxic effects of hexaammine cobalt (III) chloride on liver and kidney in mice: Implication of oxidative stress. Drug Chem Toxicol 32:293–299

    Article  CAS  PubMed  Google Scholar 

  21. Simonsen LO, Harbak H, Bennekou P (2012) Cobalt metabolism and toxicology-A brief update. Sci Total Environ 432:210–215. https://doi.org/10.1016/j.scitotenv.2012.06.009

    Article  CAS  PubMed  Google Scholar 

  22. Yang J, Yang A, Cheng N et al (2020) Sex-specific associations of blood and urinary manganese levels with glucose levels, insulin resistance and kidney function in US adults: National health and nutrition examination survey 2011–2016. Chemosphere 258:126940. https://doi.org/10.1016/j.chemosphere.2020.126940

    Article  CAS  PubMed  Google Scholar 

  23. Chen D, Jiang L, Ma M, Wan X (2022) Association of blood selenium level with estimated glomerular filtration rate in the aging population: a cross-sectional study. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03351-y

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moody EC, Coca SG, Sanders AP (2018) Toxic metals and chronic kidney disease: a systematic review of recent literature. Curr Environ Health Rep 5:453–463. https://doi.org/10.1007/s40572-018-0212-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tsai HJ, Wu PY, Huang JC, Chen SC (2021) Environmental pollution and chronic kidney disease. Int J Med Sci 18:1121–1129. https://doi.org/10.7150/ijms.51594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin R, Zhu X, Shrubsole MJ et al (2018) Associations of renal function with urinary excretion of metals: Evidence from NHANES 2003–2012. Environ Int 121:1355–1362. https://doi.org/10.1016/j.envint.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  27. Wang T, Lv Z, Fu X et al (2022) Associations between plasma metal levels and mild renal impairment in the general population of Southern China. Ecotoxicol Environ Saf 247:114209. https://doi.org/10.1016/j.ecoenv.2022.114209

    Article  CAS  PubMed  Google Scholar 

  28. Koh ES, Kim SJ, Yoon HE et al (2014) Association of blood manganese level with diabetes and renal dysfunction: A cross-sectional study of the Korean general population. BMC Endocr Disord 14. https://doi.org/10.1186/1472-6823-14-24

  29. Tian X, Shan X, Ma L et al (2023) Mixed heavy metals exposure affects the renal function mediated by 8-OHG: A cross-sectional study in rural residents of China. Environ Pollut 317. https://doi.org/10.1016/j.envpol.2022.120727

  30. Wu CY, Wong CS, Chung CJ et al (2019) The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. J Hazard Mater 375:224–232. https://doi.org/10.1016/j.jhazmat.2019.04.082

    Article  CAS  PubMed  Google Scholar 

  31. Yang F, Yi X, Guo J et al (2019) Association of plasma and urine metals levels with kidney function: A population-based cross-sectional study in China. Chemosphere 226:321–328. https://doi.org/10.1016/j.chemosphere.2019.03.171

    Article  CAS  PubMed  Google Scholar 

  32. Michalek IM, Martinsen JI, Weiderpass E et al (2019) Heavy metals, welding fumes, and other occupational exposures, and the risk of kidney cancer: A population-based nested case-control study in three Nordic countries. Environ Res 173:117–123. https://doi.org/10.1016/j.envres.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  33. Lin P-ID, Cardenas A, Rifas-Shiman S et al (2022) Nephrotoxic and non-nephrotoxic metal mixtures and kidney function in early pregnancy – a cross-sectional analysis in project viva. SSRN Electron J 216. https://doi.org/10.2139/ssrn.4114266

  34. Cobbina SJ, Chen Y, Zhou Z et al (2015) Low concentration toxic metal mixture interactions: Effects on essential and non-essential metals in brain, liver, and kidneys of mice on sub-chronic exposure. Chemosphere 132:79–86. https://doi.org/10.1016/j.chemosphere.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  35. Bjørklund G (2015) Selenium as an antidote in the treatment of mercury intoxication. Biometals 28:605–614. https://doi.org/10.1007/s10534-015-9857-5

    Article  CAS  PubMed  Google Scholar 

  36. Aaseth J, Alexander J, Alehagen U et al (2021) The aging kidney—as influenced by heavy metal exposure and selenium supplementation. Biomolecules 11:1–11. https://doi.org/10.3390/biom11081078

    Article  CAS  Google Scholar 

  37. Soudani N, Sefi M, Ben Amara I et al (2010) Protective effects of Selenium (Se) on Chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol Environ Saf 73:671–678. https://doi.org/10.1016/j.ecoenv.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  38. Shimojo N, Kumagai Y, Nagafune J (2002) Difference between kidney and liver in decreased manganese superoxide dismutase activity caused by exposure of mice to mercuric chloride. Arch Toxicol 76:383–387. https://doi.org/10.1007/s00204-002-0364-4

    Article  CAS  PubMed  Google Scholar 

  39. Li L, Yang X (2018) The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid Med Cell Longev 2018. https://doi.org/10.1155/2018/7580707

  40. Wu W, Zhang K, Jiang S et al (2018) Association of co-exposure to heavy metals with renal function in a hypertensive population. Environ Int 112:198–206. https://doi.org/10.1016/j.envint.2017.12.023

    Article  CAS  PubMed  Google Scholar 

  41. Yang J, Chan K, Choi C et al (2022) Identifying effects of urinary metals on type 2 diabetes in U.S. adults: Cross-sectional analysis of national health and nutrition examination survey 2011–2016. Nutrients 14. https://doi.org/10.3390/nu14081552

  42. Duc HN, Oh H, Kim MS (2022) The effect of mixture of heavy metals on obesity in individuals ≥ 50 years of age. Biol Trace Elem Res 200:3554–3571. https://doi.org/10.1007/s12011-021-02972-z

    Article  CAS  PubMed  Google Scholar 

  43. Luo J, Hendryx M (2020) Metal mixtures and kidney function: An application of machine learning to NHANES data. Environ Res 191:110126. https://doi.org/10.1016/j.envres.2020.110126

    Article  CAS  PubMed  Google Scholar 

  44. Zipf G, Chiappa M, Porter KS, Ostchega Y, Lewis BG, Dostal J (2013) National Health and Nutrition Examination Survey: Plan and Operations, 1999–2010. Vital and Health Statistics. Ser. 1, Programs and Collection Procedures, pp 1–3

  45. CDC. Center for Disease Control and Prevention. National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey 2015–2016—Data Documentation, Codebook, and Frequencies: Chromium & Cobalt. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2015-2016/CRCO_I.htm. Accessed 31 Oct 2022

  46. CDC. Centers for Disease Control and Prevention. National Center for Health Statistics. National Health and Nutrition Examination Survey. Cadmium, lead, manganese, mercury, and selenium in whole blood. Laboratory Procedure Manual. Available at: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/PBCD_I_met.pdf . Accessed 31 Oct 2022

  47. CDC. Centers for Disease Control and Prevention. National Center for Health Statistics. National Health and Nutrition Examination Survey. Chromium and cobalt in whole blood. Laboratory Procedure Manual. Available at: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/CRCO_I_MET_Chromium%20and%20Cobalt.pdf. Accessed 31 Oct 2022.

  48. Inker LA, Eneanya ND, Coresh J et al (2021) New creatinine-and cystatin C–based equations to estimate GFR without race. N Engl J Med 385:1737–1749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. CDC. Centers for Disease Control and Prevention. National Center for Health Statistics. National Health and Nutrition Examination Survey. Urine Creatinine. Laboratory Procedure Manual. Available at: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/ALB_CR_I_MET_CREATININE.pdf. Accessed 31 Oct 2022

  50. CDC. Centers for Disease Control and Prevention. National Center for Health Statistics. National Health and Nutrition Examination Survey. Urine Albumin. Laboratory Procedure Manual. Available at: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/ALB_CR_I_MET_ALBUMIN.pdf. Accessed 31 Oct 2022

  51. CDC. Centers for Disease Control and Prevention. National Center for Health Statistics. National Health and Nutrition Examination Survey. Refrigerated Serum Creatinine. Laboratory Procedure Manual. Available at: https://wwwn.cdc.gov/nchs/data/nhanes/2015-2016/labmethods/BIOPRO_I_MET_CREATININE_DXC800.pdf. Accessed 31 Oct 2022

  52. Stevens PE, Levin A (2013) Improving global outcomes chronic kidney disease guideline development work group members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158:825–830

    Article  PubMed  Google Scholar 

  53. Kang H, Lee J, Lee JP, Choi K (2019) Urinary metabolites of organophosphate esters (OPEs) are associated with chronic kidney disease in the general US population, NHANES 2013–2014. Environ Int 131:105034. https://doi.org/10.1016/j.envint.2019.105034

    Article  CAS  PubMed  Google Scholar 

  54. Chen C, Zhou Q, Yang R et al (2021) Copper exposure association with prevalence of non-alcoholic fatty liver disease and insulin resistance among US adults (NHANES 2011–2014). Ecotoxicol Environ Saf 218:112295. https://doi.org/10.1016/j.ecoenv.2021.112295

    Article  CAS  PubMed  Google Scholar 

  55. Xu C, Xu J, Zhang X et al (2021) Serum nickel is associated with craniosynostosis risk: Evidence from humans and mice. Environ Int 146:106289. https://doi.org/10.1016/j.envint.2020.106289

    Article  CAS  PubMed  Google Scholar 

  56. Nguyen HD, Oh H, Kim MS (2022) The effects of chemical mixtures on lipid profiles in the Korean adult population: threshold and molecular mechanisms for dyslipidemia involved. Environ Sci Pollut Res 29:39182–39208. https://doi.org/10.1007/s11356-022-18871-2

    Article  CAS  Google Scholar 

  57. Zhang QQ, Li JH, Wang YD et al (2021) Association between maternal thallium exposure and risk of gestational diabetes mellitus: Evidence from a birth cohort study. Chemosphere 270:128637. https://doi.org/10.1016/j.chemosphere.2020.128637

    Article  CAS  PubMed  Google Scholar 

  58. Yang J, Lu Y, Bai Y, Cheng Z (2023) Sex-specific and dose‐response relationships of urinary cobalt and molybdenum levels with glucose levels and insulin resistance in U.S. adults. J Environ Sci 124:42–49. https://doi.org/10.1016/j.jes.2021.10.023

    Article  CAS  Google Scholar 

  59. Liu Y, Yuan Y, Xiao Y et al (2020) Associations of plasma metal concentrations with the decline in kidney function: A longitudinal study of Chinese adults. Ecotoxicol Environ Saf 189:110006. https://doi.org/10.1016/j.ecoenv.2019.110006

    Article  CAS  PubMed  Google Scholar 

  60. Lo K, Yang JL, Chen CL et al (2021) Associations between blood and urinary manganese with metabolic syndrome and its components: Cross-sectional analysis of National Health and Nutrition Examination Survey 2011–2016. Sci Total Environ 780:146527. https://doi.org/10.1016/j.scitotenv.2021.146527

    Article  CAS  PubMed  Google Scholar 

  61. Keil AP, Buckley JP, O’Brien KM et al (2020) A quantile-based G-computation approach to addressing the effects of exposure mixtures. Environ Health Perspect 128: 047004. https://doi.org/10.1289/EHP5838

  62. Xu J, White AJ, Niehoff NM et al (2020) Airborne metals exposure and risk of hypertension in the Sister Study. Environ Res 191:110144. https://doi.org/10.1016/j.envres.2020.110144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhong Q, Qin Q, Yang W et al (2021) Multiple metal exposure and obesity: A prospective cohort study of adults living along the Yangtze River, China. Environ Pollut 285:117150. https://doi.org/10.1016/j.envpol.2021.117150

    Article  CAS  PubMed  Google Scholar 

  64. Lee KS, Kim KN, Ahn YD et al (2021) Prenatal and postnatal exposures to four metals mixture and IQ in 6-year-old children: A prospective cohort study in South Korea. Environ Int 157:106798. https://doi.org/10.1016/j.envint.2021.106798

    Article  CAS  PubMed  Google Scholar 

  65. Bobb JF, Valeri L, Claus Henn B et al (2015) Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 16:493–508

    Article  PubMed  Google Scholar 

  66. Niehoff NM, Keil AP, O’Brien KM et al (2020) Metals and trace elements in relation to body mass index in a prospective study of US women. Environ Res 184:109396. https://doi.org/10.1016/j.envres.2020.109396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bobb JF, Claus Henn B, Valeri L, Coull BA (2018) Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ Heal 17:1–10

    Article  Google Scholar 

  68. Coker E, Chevrier J, Rauch S et al (2018) Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. Environ Int 113:122–132. https://doi.org/10.1016/j.envint.2018.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nguyen HD (2023) Interactions between heavy metals and sleep duration among pre-and postmenopausal women: A current approach to molecular mechanisms involved. Environ Pollut 316:120607. https://doi.org/10.1016/j.envpol.2022.120607

    Article  CAS  PubMed  Google Scholar 

  70. Kim K, Argos M, Persky VW et al (2022) Associations of exposure to metal and metal mixtures with thyroid hormones: Results from the NHANES 2007–2012. Environ Res 212:113413. https://doi.org/10.1016/j.envres.2022.113413

    Article  CAS  PubMed  Google Scholar 

  71. Sanders AP, Mazzella MJ, Malin AJ et al (2019) Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12–19 in NHANES 2009–2014. Environ Int 131:104993. https://doi.org/10.1016/j.envint.2019.104993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao M, Ge X, Xu J et al (2022) Association between urine metals and liver function biomarkers in Northeast China: A cross-sectional study. Ecotoxicol Environ Saf 231:113163. https://doi.org/10.1016/j.ecoenv.2022.113163

    Article  CAS  PubMed  Google Scholar 

  73. Wang R, Long T, He J et al (2022) Associations of multiple plasma metals with chronic kidney disease in patients with diabetes. Ecotoxicol Environ Saf 244:114048. https://doi.org/10.1016/j.ecoenv.2022.114048

    Article  CAS  PubMed  Google Scholar 

  74. Weidemann D, Kuo C-C, Navas-Acien A et al (2015) Association of arsenic with kidney function in adolescents and young adults: Results from the National Health and Nutrition Examination Survey 2009–2012. Environ Res 140:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin Y, Cai J, Liu Q et al (2022) Sex-specific associations of urinary metals with renal function: a cross-sectional study in China. Biol Trace Elem Res 2240–2249. https://doi.org/10.1007/s12011-022-03349-6

  76. ting Zhou T, Hu B, Meng X long, et al (2021) The associations between urinary metals and metal mixtures and kidney function in Chinese community-dwelling older adults with diabetes mellitus. Ecotoxicol Environ Saf 226. https://doi.org/10.1016/j.ecoenv.2021.112829

  77. Wang T, Zhang L, Liu Y et al (2023) Combined exposure to multiple metals and kidney function in a midlife and elderly population in China: A prospective cohort study. Toxics 11:274. https://doi.org/10.3390/toxics11030274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Posthuma L, Baerselman R, Van Veen RPM, Dirven-Van Breemen EM (1997) Single and joint toxic effects of copper and zinc on reproduction ofenchytraeus crypticusin relation to sorption of metals in soils. Ecotoxicol Environ Saf 38:108–121

    Article  CAS  PubMed  Google Scholar 

  79. Tsai TL, Kuo CC, Pan WH et al (2017) The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int 92:710–720. https://doi.org/10.1016/j.kint.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  80. Cao B, Fang C, Peng X et al (2021) U-shaped association between plasma cobalt levels and type 2 diabetes. Chemosphere 267. https://doi.org/10.1016/j.chemosphere.2020.129224

  81. Renu K, Chakraborty R, Myakala H et al (2021) Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity – A review. Chemosphere 271:129735. https://doi.org/10.1016/j.chemosphere.2021.129735

    Article  CAS  PubMed  Google Scholar 

  82. Jain RB (2020) Cadmium and kidney function: Concentrations, variabilities, and associations across various stages of glomerular function. Environ Pollut 256:113361. https://doi.org/10.1016/j.envpol.2019.113361

    Article  CAS  PubMed  Google Scholar 

  83. Butler-Dawson J, James KA, Krisher L et al (2021) Environmental metal exposures and kidney function of Guatemalan sugarcane workers. J Expo Sci Environ Epidemiol. https://doi.org/10.1038/s41370-021-00292-x

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lentini P, Zanoli L, Granata A et al (2017) Kidney and heavy metals - The role of environmental exposure (Review). Mol Med Rep 15:3413–3419. https://doi.org/10.3892/mmr.2017.6389

    Article  CAS  PubMed  Google Scholar 

  85. Lunyera J, Smith SR (2017) Heavy metal nephropathy: considerations for exposure analysis. Kidney Int 92:548–550. https://doi.org/10.1016/j.kint.2017.04.043

    Article  PubMed  Google Scholar 

  86. Zhang J, Wang J, Hu J et al (2021) Associations of total blood mercury and blood methylmercury concentrations with diabetes in adults: An exposure-response analysis of 2005–2018 NHANES. J Trace Elem Med Biol 68:1–7. https://doi.org/10.1016/j.jtemb.2021.126845

    Article  CAS  Google Scholar 

  87. Mozaffarian D, Shi P, Morris JS et al (2011) Mercury exposure and risk of cardiovascular disease in two US cohorts. N Engl J Med 364:1116–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Duni A, Liakopoulos V, Roumeliotis S et al (2019) Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne’s thread. Int J Mol Sci 20:3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Popolo A, Autore G, Pinto A, Marzocco S (2013) Oxidative stress in patients with cardiovascular disease and chronic renal failure. Free Radic Res 47:346–356

    Article  CAS  PubMed  Google Scholar 

  90. Daenen K, Andries A, Mekahli D et al (2019) Oxidative stress in chronic kidney disease. Pediatr Nephrol 34:975–991

    Article  PubMed  Google Scholar 

  91. Huang Y, Shen G, Lo K et al (2020) Association of circulating selenium concentration with dyslipidemia: Results from the NHANES. J Trace Elem Med Biol 58. https://doi.org/10.1016/j.jtemb.2019.126438

  92. Rayman MP, Stranges S (2013) Epidemiology of selenium and type 2 diabetes: Can we make sense of it? Free Radic Biol Med 65:1557–1564. https://doi.org/10.1016/j.freeradbiomed.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  93. Eaton CB, Abdul Baki AR, Waring ME et al (2010) The association of low selenium and renal insufficiency with coronary heart disease and all-cause mortality: NHANES III follow-up study. Atherosclerosis 212:689–694. https://doi.org/10.1016/j.atherosclerosis.2010.07.008

    Article  CAS  PubMed  Google Scholar 

  94. Wang X, Seo YA, Park SK (2021) Serum selenium and non-alcoholic fatty liver disease (NAFLD) in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2011–2016. Environ Res 197:111190. https://doi.org/10.1016/j.envres.2021.111190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. De, Boer IH, Steffes MW (2007) Glomerular filtration rate and albuminuria: twin manifestations of nephropathy in diabetes. J Am Soc Nephrol 18:1036–1037

    Article  CAS  Google Scholar 

  96. Roels H, Lauwerys R, Konings J et al (1994) Renal function and hyperfiltration capacity in lead smelter workers with high bone lead. Occup Environ Med 51:505–512. https://doi.org/10.1136/oem.51.8.505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chung S, Chung JH, Kim SJ et al (2014) Blood lead and cadmium levels and renal function in Korean adults. Clin Exp Nephrol 18:726–734. https://doi.org/10.1007/s10157-013-0913-6

    Article  CAS  PubMed  Google Scholar 

  98. Toeller M, Buyken A, Heitkamp G et al (1997) Protein intake and urinary albumin excretion rates in the eurodiab iddm complications study. Diabetologia 40:1219–1226. https://doi.org/10.1007/s001250050810

    Article  CAS  PubMed  Google Scholar 

  99. Chen N, Zhao C, Zhang T (2021) Selenium transformation and selenium-rich foods. Food Biosci 40:1–6. https://doi.org/10.1016/j.fbio.2020.100875

    Article  CAS  Google Scholar 

  100. Kieliszek M, Błazejak S (2016) Current knowledge on the importance of selenium in food for living organisms: A review. Molecules 21. https://doi.org/10.3390/molecules21050609

  101. Van Camp I, Ritskes-Hoitinga J, Lemmens AG, Beynen AC (1990) Diet-induced nephrocalcinosis and urinary excretion of albumin in female rats. Lab Anim 24:137–141. https://doi.org/10.1258/002367790780890086

    Article  PubMed  Google Scholar 

  102. Teixeira SR, Tappenden KA, Carson LA et al (2004) Isolated soy protein consumption reduces urinary albumin excretion and improves the serum lipid profile in men with type 2 diabetes mellitus and nephropathy. J Nutr 134:1874–1880. https://doi.org/10.1093/jn/134.8.1874

    Article  CAS  PubMed  Google Scholar 

  103. Metzger M, Yuan WL, Haymann JP et al (2018) Association of a low-protein diet with slower progression of CKD. Kidney Int Rep 3:105–114. https://doi.org/10.1016/j.ekir.2017.08.010

    Article  PubMed  Google Scholar 

  104. Percheron C, Colette C, Astre C, Monnier L (1995) Effects of moderate changes in protein intake on urinary albumin excretion in type I diabetic patients. Nutrition 11:345–349

    CAS  PubMed  Google Scholar 

  105. Guidi GC, Bellisola G, Bonadonna G et al (1990) Selenium supplementation increases renal glomerular filtration rate. J Trace Elem Electrolytes Health Dis 4:157–161

    CAS  PubMed  Google Scholar 

  106. Klop B, Elte JWF, Castro Cabezas M (2013) Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 5:1218–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yuan S, Mason AM, Carter P et al (2022) Selenium and cancer risk: Wide-angled Mendelian randomization analysis. Int J Cancer 150:1134–1140. https://doi.org/10.1002/ijc.33902

    Article  CAS  PubMed  Google Scholar 

  108. Laclaustra M, Navas-Acien A, Stranges S et al (2009) Serum selenium concentrations and hypertension in the US population. Circ Cardiovasc Qual Outcomes 2:369–376. https://doi.org/10.1161/CIRCOUTCOMES.108.831552

    Article  PubMed  PubMed Central  Google Scholar 

  109. Burk RF (2002) Selenium, an antioxidant nutrient. Nutr Clin Care 5:75–79. https://doi.org/10.1046/j.1523-5408.2002.00006.x

    Article  PubMed  Google Scholar 

  110. Wan H, Jiang Y, Yang J et al (2022) Sex-specific associations of the urinary fourteen-metal mixture with NAFLD and liver fibrosis among US adults: A nationally representative study. Ecotoxicol Environ Saf 248:114306. https://doi.org/10.1016/j.ecoenv.2022.114306

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [Grant no. 81673248] and the Scientific Research and Innovation Foundation of Gansu University of Chinese Medicine [Grant no. 2022KCYB-11].

Author information

Authors and Affiliations

Authors

Contributions

Yaxing Nan: Conceptualization, Methodology, Formal analysis, Visualization, Manuscript writing, Funding acquisition. Jingli Yang: Conceptualization, Methodology, Data curation, Writing-review and editing. Jinyu Yang: Conceptualization, Writing-review and editing, Supervision. Lili Wei: Formal analysis, Data curation. Yana Bai: Data Curation, Conceptualization, Supervision, Validation, Writing—review and editing, Funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yana Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material

ESM 1

(DOCX 271 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nan, Y., Yang, J., Yang, J. et al. Associations Between Individual and Combined Metal Exposures in Whole Blood and Kidney Function in U.S. Adults Aged 40 Years and Older. Biol Trace Elem Res 202, 850–865 (2024). https://doi.org/10.1007/s12011-023-03722-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03722-z

Keywords

Navigation