Skip to main content
Log in

Association of Serum Concentrations of Copper, Selenium, and Zinc with Grip Strength Based on NHANES 2013–2014

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Increasing evidence has found metals to be strongly associated with muscle strength, but the correlations between serum copper (Cu), selenium (Se), and zinc (Zn) with grip strength in adult populations have not yet been established. We examined the linear and non-linear associations between these three metals and grip strength via multiple linear regression and restricted cubic spline (RCS) regression using data from the National Health and Nutrition Examination Survey (NHANES) 2013–2014. A higher concentration of serum Cu was monotonically linked with lower grip strength [β = − 0.004 m2 (95% CI: − 0.005, − 0.002)], and serum Zn was positively associated with grip strength [β = 0.004 m2 (95% CI: 0.002, 0.006)]. We observed a positive association between serum Se and grip strength in the unadjusted model but not in covariate-adjusted models. Interestingly, the results of RCS regression showed that serum Cu had an L-shaped non-linear association with grip strength in all participants and subgroups. We further found a linear-increased trend between serum Zn and the grip strength in all participants. There were also non-linear associations that varied across different subgroups. Taken together, serum Cu and Zn were significantly associated with grip strength, while Se was not. This study offers new evidence to help formulate a reference concentration range for serum Cu and Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Raw data can be found in the official website (https://www.cdc.gov/nchs/nhanes/index.htm).

References

  1. Mitsionis G, Pakos EE, Stafilas KS, Paschos N, Papakostas T, Beris AE (2009) Normative data on hand grip strength in a Greek adult population. Int Orthop 33(3):713–717

    Article  PubMed  Google Scholar 

  2. Gubelmann C, Vollenweider P, Marques-Vidal P (2017) Association of grip strength with cardiovascular risk markers. Eur J Prev Cardiol 24(5):514–521

    Article  PubMed  Google Scholar 

  3. Cui M, Zhang S, Liu Y, Gang X, Wang G (2021) Grip strength and the risk of cognitive decline and dementia: a systematic review and meta-analysis of longitudinal cohort studies. Front Aging Neurosci 13:625551

    Article  PubMed  PubMed Central  Google Scholar 

  4. Su H, Sun X, Li F, Guo Q (2021) Association between handgrip strength and cognition in a Chinese population with Alzheimer’s disease and mild cognitive impairment. BMC Geriatr 21(1):459

    Article  PubMed  PubMed Central  Google Scholar 

  5. McGrath RP, Vincent BM, Lee IM, Kraemer WJ, Peterson MD (2018) Handgrip strength, function, and mortality in older adults: a time-varying approach. Med Sci Sports Exerc 50(11):2259–2266

    Article  PubMed  PubMed Central  Google Scholar 

  6. Atlantis E, Martin SA, Haren MT, Taylor AW, Wittert GA (2009) Inverse associations between muscle mass, strength, and the metabolic syndrome. Metab Clin Exp 58(7):1013–1022

    Article  CAS  PubMed  Google Scholar 

  7. García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, Ruiz JR, Ortega FB, Lee DC, Martínez-Vizcaíno V (2018) Muscular strength as a predictor of all-cause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil 99(10):2100–2113.e2105

    Article  PubMed  Google Scholar 

  8. Bohannon RW (2015) Muscle strength: clinical and prognostic value of hand-grip dynamometry. Curr Opin Clin Nutr Metab Care 18(5):465–470

    Article  PubMed  Google Scholar 

  9. He H, Lu H, Liu S, Cai J, Tang X, Mo C, Xu X, Chen Q, Xu M, Nong C et al (2021) Effects of the association between APOE rs405509 polymorphisms and gene-environment interactions on hand grip strength among middle-aged and elderly people in a rural population in southern China. J Orthop Surg Res 16(1):372

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ogata S, Kato K, Honda C, Hayakawa K (2014) Common genetic factors influence hand strength, processing speed, and working memory. J Epidemiol 24(1):31–38

    Article  PubMed  Google Scholar 

  11. Zempo H, Miyamoto-Mikami E, Kikuchi N, Fuku N, Miyachi M, Murakami H (2017) Heritability estimates of muscle strength-related phenotypes: a systematic review and meta-analysis. Scand J Med Sci Sports 27(12):1537–1546

    Article  CAS  PubMed  Google Scholar 

  12. Cui Y, Huang C, Momma H, Sugiyama S, Niu K, Nagatomi R (2019) The longitudinal association between alcohol consumption and muscle strength: a population-based prospective study. J Musculoskelet Neuronal Interact 19(3):294–299

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kok MO, Hoekstra T, Twisk JW (2012) The longitudinal relation between smoking and muscle strength in healthy adults. Eur Addict Res 18(2):70–75

    Article  PubMed  Google Scholar 

  14. Liberman K, Forti LN, Beyer I, Bautmans I (2017) The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: a systematic review. Curr Opin Clin Nutr Metab Care 20(1):30–53

    Article  PubMed  Google Scholar 

  15. Gedmantaite A, Celis-Morales CA, Ho F, Pell JP, Ratkevicius A, Gray SR (2020) Associations between diet and handgrip strength: a cross-sectional study from UK Biobank. Mech Ageing Dev 189:111269

    Article  CAS  PubMed  Google Scholar 

  16. Mithal A, Bonjour J, Dawson-Hughes B (2014) Impact of nutrition on muscle mass, strength, and performance in older adults: response to Scott and Jones. Osteoporos Int 25(2):793

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Gu Y, Cheng J, Meng G, Zhang Q, Liu L, Wu H, Zhang S, Wang Y, Zhang T et al (2021) The relationship between dietary patterns and grip strength in the general population: the TCLSIH cohort study. Eur J Nutr 60(5):2409–2421

    Article  CAS  PubMed  Google Scholar 

  18. Beck J, Ferrucci L, Sun K, Walston J, Fried LP, Varadhan R, Guralnik JM, Semba RD (2007) Low serum selenium concentrations are associated with poor grip strength among older women living in the community. BioFactors (Oxford, England) 29(1):37–44

    Article  CAS  PubMed  Google Scholar 

  19. García-Esquinas E, Carrasco-Rios M, Navas-Acien A, Ortolá R, Rodríguez-Artalejo F (2020) Cadmium exposure is associated with reduced grip strength in US adults. Environ Res 180:108819

    Article  PubMed  Google Scholar 

  20. Gbemavo MCJ, Bouchard MF (2021) Concentrations of lead, mercury, selenium, and manganese in blood and hand grip strength among adults living in the United States (NHANES 2011-2014). Toxics 9(8)

  21. Wu M, Shu Y, Wang Y (2022) Exposure to mixture of heavy metals and muscle strength in children and adolescents: a population-based study. Environ Sci Pollut Res Int 29(40):60269–60277

    Article  CAS  PubMed  Google Scholar 

  22. Collins JF, Klevay LM (2011) Copper. Advances in nutrition (Bethesda, Md) 2(6):520–522

    Article  PubMed  Google Scholar 

  23. Rink L, Gabriel P (2000) Zinc and the immune system. Proc Nutr Soc 59(4):541–552

    Article  CAS  PubMed  Google Scholar 

  24. Tanguy S, Grauzam S, de Leiris J, Boucher F (2012) Impact of dietary selenium intake on cardiac health: experimental approaches and human studies. Mol Nutr Food Res 56(7):1106–1121

    Article  CAS  PubMed  Google Scholar 

  25. Choi S, Liu X, Pan Z (2018) Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacol Sin 39(7):1120–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Scheiber IF, Dringen R (2013) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 62(5):556–565

    Article  CAS  PubMed  Google Scholar 

  27. Shahar A, Patel KV, Semba RD, Bandinelli S, Shahar DR, Ferrucci L, Guralnik JM (2010) Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord 25(12):1909–1915

    Article  PubMed  PubMed Central  Google Scholar 

  28. Marreiro DD, Cruz KJ, Morais JB, Beserra JB, Severo JS, de Oliveira AR (2017) Zinc and oxidative stress: current mechanisms. Antioxidants 6(2)

  29. Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  CAS  PubMed  Google Scholar 

  30. Wrobel JK, Power R, Toborek M (2016) Biological activity of selenium: Revisited. IUBMB Life 68(2):97–105

    Article  CAS  PubMed  Google Scholar 

  31. Kumar V, Kalita J, Misra UK, Bora HK (2015) A study of dose response and organ susceptibility of copper toxicity in a rat model. J Trace Elem Med Biol 29:269–274

    Article  CAS  PubMed  Google Scholar 

  32. Nishikawa H, Enomoto H, Yoh K, Iwata Y, Sakai Y, Kishino K, Ikeda N, Takashima T, Aizawa N, Takata R et al (2019) Serum zinc concentration and sarcopenia: a close linkage in chronic liver diseases. J Clin Med 8(3)

  33. Lauretani F, Semba RD, Bandinelli S, Ray AL, Guralnik JM, Ferrucci L (2007) Association of low plasma selenium concentrations with poor muscle strength in older community-dwelling adults: the InCHIANTI Study. Am J Clin Nutr 86(2):347–352

    Article  CAS  PubMed  Google Scholar 

  34. Wee AK (2016) Serum folate predicts muscle strength: a pilot cross-sectional study of the association between serum vitamin levels and muscle strength and gait measures in patients >65 years old with diabetes mellitus in a primary care setting. Nutr J 15(1):89

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, Sun J, Li Z, Zhang D (2021) The relationship between serum folate and grip strength in American adults. Arch Osteoporos 16(1):97

    Article  CAS  PubMed  Google Scholar 

  36. Sallinen J, Stenholm S, Rantanen T, Heliövaara M, Sainio P, Koskinen S (2010) Hand-grip strength cut points to screen older persons at risk for mobility limitation. J Am Geriatr Soc 58(9):1721–1726

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bastola MM, Locatis C, Maisiak R, Fontelo P (2020) Selenium, copper, zinc and hypertension: an analysis of the National Health and Nutrition Examination Survey (2011-2016). BMC Cardiovasc Disord 20(1):45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou J, Meng X, Deng L, Liu N (2022) Non-linear associations between metabolic syndrome and four typical heavy metals: Data from NHANES 2011-2018. Chemosphere 291(Pt 2):132953

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ (2020) Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Transl Neurodegener 9:10

    Article  PubMed  PubMed Central  Google Scholar 

  40. Myhre O, Utkilen H, Duale N, Brunborg G, Hofer T (2013) Metal dyshomeostasis and inflammation in Alzheimer’s and Parkinson’s diseases: possible impact of environmental exposures. Oxidative Med Cell Longev 2013:726954

    Article  Google Scholar 

  41. Gromadzka G, Tarnacka B, Flaga A, Adamczyk A (2020) Copper dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int J Mol Sci 21(23)

  42. Yamada E, Takeuchi M, Kurata M, Tsuboi A, Kazumi T, Fukuo K (2015) Low haemoglobin levels contribute to low grip strength independent of low-grade inflammation in Japanese elderly women. Asia Pac J Clin Nutr 24(3):444–451

    CAS  PubMed  Google Scholar 

  43. Kalita J, Kumar V, Misra UK, Bora HK (2020) Movement disorder in copper toxicity rat model: role of inflammation and apoptosis in the corpus striatum. Neurotox Res 37(4):904–912

    Article  CAS  PubMed  Google Scholar 

  44. Luo L, Xu J, Jiang R, Yao B, Di J (2023) Association between serum copper, zinc and their ratio and handgrip strength among adults: a study from National Health and Nutrition Examination Survey (NHANES) 2011-2014. Environ Sci Pollut Res Int 30(11):29100–29109

    Article  CAS  PubMed  Google Scholar 

  45. García-Esquinas E, Carrasco-Rios M, Ortolá R, Sotos Prieto M, Pérez-Gómez B, Gutiérrez-González E, Banegas JR, Queipo R, Olmedo P, Gil F et al (2021) Selenium and impaired physical function in US and Spanish older adults. Redox Biol 38:101819

    Article  PubMed  Google Scholar 

  46. Pillai R, Uyehara-Lock JH, Bellinger FP (2014) Selenium and selenoprotein function in brain disorders. IUBMB Life 66(4):229–239

    Article  CAS  PubMed  Google Scholar 

  47. Rayman MP (2012) Selenium and human health. Lancet (London, England) 379(9822):1256–1268

    Article  CAS  PubMed  Google Scholar 

  48. Perri G, Mendonça N, Jagger C, Walsh J, Eastell R, Mathers JC, Hill TR (2020) Dietary selenium intakes and musculoskeletal function in very old adults: analysis of the Newcastle 85+ study. Nutrients 12(7)

  49. Morris JS, Crane SB (2013) Selenium toxicity from a misformulated dietary supplement, adverse health effects, and the temporal response in the nail biologic monitor. Nutrients 5(4):1024–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Alker W, Haase H (2018) Zinc and Sepsis. Nutrients 10:8

    Article  Google Scholar 

  51. Costello LC, Franklin RB (2017) Decreased zinc in the development and progression of malignancy: an important common relationship and potential for prevention and treatment of carcinomas. Expert Opin Ther Targets 21(1):51–66

    Article  CAS  PubMed  Google Scholar 

  52. Himoto T, Masaki T (2018) Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease. Nutrients 10(1)

  53. Liuzzi JP, Guo L, Yoo C, Stewart TS (2014) Zinc and autophagy. Biometals 27(6):1087–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lukaski HC (2004) Vitamin and mineral status: effects on physical performance. Nutrition (Burbank, Los Angeles County, Calif) 20(7-8):632–644

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by grants from the National Natural Science Foundation of China (nos. 81973071 and 81773473 to XM).

Author information

Authors and Affiliations

Authors

Contributions

Kaiju Chen: methodology, formal analysis, data curation, and writing—original draft preparation. Jianli Zhou: formal analysis, visualization, and writing—original draft. Nan Liu: data curation, visualization, and validation. Xiaojing Meng: conceptualization, supervision, and writing—review and editing.

Corresponding author

Correspondence to Xiaojing Meng.

Ethics declarations

Ethics Approval and Consent to Participate

NHANES was approved by the National Center for Health Statistics Research Ethics Review Board.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Zhou, J., Liu, N. et al. Association of Serum Concentrations of Copper, Selenium, and Zinc with Grip Strength Based on NHANES 2013–2014. Biol Trace Elem Res 202, 824–834 (2024). https://doi.org/10.1007/s12011-023-03718-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03718-9

Keywords

Navigation