Skip to main content
Log in

Selenium-Enriched Cardamine violifolia Alleviates LPS-Induced Hepatic Damage and Inflammation by Suppressing TLR4/NODs–Necroptosis Signal Axes in Piglets

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium-enriched Cardamine violifolia (SEC), a cruciferous plant, exerts excellent antioxidant and anti-inflammatory capacity, but its effect on hepatic function is unclear. This study investigated the effect and potential mechanism of SEC on hepatic injury induced by lipopolysaccharide (LPS). Twenty-four weaned piglets were randomly allotted to treatment with SEC (0.3 mg/kg Se) and/or LPS (100 μg/kg). After 28 days of the trial, pigs were injected with LPS to induce hepatic injury. These results indicated that SEC supplementation attenuated LPS-induced hepatic morphological injury and reduced aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities in plasma. SEC also inhibited the expression of pro-inflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) after the LPS challenge. In addition, SEC improved hepatic antioxidant capacity via enhancing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) concentration. Moreover, SEC downregulated the mRNA expression of hepatic myeloid differentiation factor 88 (MyD88) and nucleotide-binding oligomerization domain proteins 1 (NOD1) and its adaptor molecule receptor interacting protein kinase 2 (RIPK2). SEC also alleviated LPS-induced hepatic necroptosis by inhibiting RIPK1, RIPK3, and mixed-lineage kinase domain-like (MLKL) expression. These data suggest that SEC potentially mitigates LPS-induced hepatic injury via inhibiting Toll-like receptor 4 (TLR4)/NOD2 and necroptosis signaling pathways in weaned piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Data Availability

The data are available from the corresponding author.

References

  1. Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554

    Article  PubMed  Google Scholar 

  2. Koyama Y, Brenner D (2017) Liver inflammation and fibrosis. J Clin Invest 127:55–64

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu H, Liu Y, Pi D, Leng W, Zhu H, Hou Y, Li S, Shi H, Wang X (2015) Asparagine attenuates hepatic injury caused by lipopolysaccharide in weaned piglets associated with modulation of Toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling and their negative regulators. Br J Nutr 114:189–201

    Article  CAS  PubMed  Google Scholar 

  4. Wang L, Tu Z, Wang H, Wang S, Wang X, Zhu H, Hu C, Liu Y (2018) Flaxseed oil improves liver injury and inhibits necroptotic and inflammatory signaling pathways following lipopolysaccharide challenge in a piglet model. J Funct Foods 46:482–489

    Article  CAS  Google Scholar 

  5. Zhu H, Wang H, Wang S, Tu Z, Zhang L, Wang X et al (2018) Flaxseed oil attenuates intestinal damage and inflammation by regulating necroptosis and TLR4/NOD signaling pathways following lipopolysaccharide challenge in a piglet model. Mol Nutr Food Res 62:1700814

    Article  Google Scholar 

  6. Rubino S, Selvanantham T, Girardin S, Philpott D (2012) Nod-like receptors in the control of intestinal inflammation. Curr Opin Immunol 24:398–404

    Article  CAS  PubMed  Google Scholar 

  7. Shen Y, Malik S, Amir M, Kumar P, Cingolani F, Wen J et al (2020) Decreased hepatocyte autophagy leads to synergistic IL-1β and TNF mouse liver injury and inflammation. Hepatology 72:595–608

    Article  CAS  PubMed  Google Scholar 

  8. Saeed W, Jun D, Jang K, Koh D (2019) Necroptosis signaling in liver diseases: an update. Pharmacol Res 148:104439

    Article  CAS  PubMed  Google Scholar 

  9. Sai K, Parsons C, House J, Kathariou S, Ninomiya-Tsuji J (2019) Necroptosis mediators RIPK3 and MLKL suppress intracellular replication independently of host cell killing. J Cell Biol 218:1994–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang L, Wang T, Li H, Liu Q, Zhang Z, Xie W et al (2016) Receptor interacting protein 3-mediated necroptosis promotes lipopolysaccharide-induced inflammation and acute respiratory distress syndrome in mice. PloS One 11:e0155723

    Article  PubMed  PubMed Central  Google Scholar 

  11. Majdi A, Aoudjehane L, Ratziu V, Islam T, Afonso MB, Conti F et al (2020) Inhibition of receptor-interacting protein kinase 1 improves experimental non-alcoholic fatty liver disease. J Hepatol 72:627–635

    Article  CAS  PubMed  Google Scholar 

  12. Schomburg L (2016) Dietary selenium and human health. Nutrients 9:22

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rayman M (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  14. Hu X, Chandler J, Orr M, Hao L, Liu K, Uppal K, Go Y, Jones D (2018) Selenium supplementation alters hepatic energy and fatty acid metabolism in mice. J Nutr 148:675–684

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tang C, Li S, Zhang K, Li J, Han Y, Zhan T, Zhao Q, Guo X, Zhang J (2020) Selenium deficiency-induced redox imbalance leads to metabolic reprogramming and inflammation in the liver. Redox Biol 36:101519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang R, Guo R, Liu Q, Li G, Sun B, Huang X (2021) Selenium deficiency via the TLR4/TRIF/NF-κB signaling pathway leading to inflammatory injury in chicken spleen. Biol Trace Elem Res 199:693–702

    Article  PubMed  Google Scholar 

  17. Zhang Y, Yu D, Zhang J, Bao J, Tang C, Zhang Z (2020) The role of necroptosis and apoptosis through the oxidative stress pathway in the liver of selenium-deficient swine. Metallomics 12:607–616

    Article  CAS  PubMed  Google Scholar 

  18. Zhu S, Du C, Yu T, Cong X, Liu Y, Chen S, Li Y (2019) Antioxidant activity of selenium-enriched peptides from the protein hydrolysate of Cardamine violifolia. J Food Sci 84:3504–3511

    Article  CAS  PubMed  Google Scholar 

  19. Yu T, Guo J, Zhu S, Zhang X, Zhu Z, Cheng SY, Cong X (2020) Protective effects of selenium-enriched peptides from Cardamine violifolia on d-galactose-induced brain aging by alleviating oxidative stress, neuroinflammation, and neuron apoptosis. J Funct Foods 75:104277

    Article  CAS  Google Scholar 

  20. Yu T, Guo J, Zhu S, Li M, Zhu Z, Cheng S, Wang S, Sun Y, Cong X (2020) Protective effects of selenium-enriched peptides from Cardamine violifolia against high-fat diet induced obesity and its associated metabolic disorders in mice. RSC Adv 10:31411–31424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu S, Yang W, Lin Y, Du C, Cong X (2021) Antioxidant and anti-fatigue activities of selenium-enriched peptides isolated from Cardamine violifolia protein hydrolysate. J Funct Foods 79:104412

    Article  CAS  Google Scholar 

  22. Zhao L, Chu X, Liu S, Li R, Zhu Y, Li F et al (2022) (2022) Selenium-enriched Cardamine violifolia increases selenium and decreases cholesterol concentrations in liver and pectoral muscle of broilers. J Nutr 152:2072–2079

    Article  PubMed  Google Scholar 

  23. Wang D, Kuang YL, Lv QQ, Xie WS, Xu X, Zhu HL et al (2023) Selenium-enriched Cardamine violifolia protects against sepsis-induced intestinal injury by regulating mitochondrial fusion in weaned pigs. Sci China Life Sci. https://doi.org/10.1007/s11427-022-2274-7

  24. Chen F, Liu Y, Zhu H, Hong Y, Wu Z, Hou Y et al (2013) Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways. Innate Immun 19:504–515

    Article  PubMed  Google Scholar 

  25. Xu Q, Guo J, Li X, Wang Y, Liu Y (2021) Necroptosis underlies hepatic damage in a piglet model of lipopolysaccharide-induced sepsis. Front Immunol 12:633830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu X, Wei Y, Zhang Y, Jing X, Cong X, Gao Q et al (2022) A new selenium source from Se-enriched Cardamine violifolia improves growth performance, anti-oxidative capacity and meat quality in broilers. Front Nutr 9:996932

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang L, Xu JY, Wei Y, Gao SL, Wang L, Zheng JY, Gu M, Qin LQ (2022) Protective effect of selenium-enriched green tea on carbon tetrachloride-induced liver fibrosis. Biol Trace Elem Res 200:2233–2238

    Article  CAS  PubMed  Google Scholar 

  28. van Beek J, de Moor M, de Geus E, Lubke G, Vink J, Willemsen G, Boomsma D (2013) The genetic architecture of liver enzyme levels: GGT, ALT and AST. Behav Genet 43:329–339

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sidonia B, Horatiu R, Vlad L, Francisc D, Ciprian O, Cosmin P, Liviu O, Sanda A (2020) Hypothermia effects on liver and kidney oxidative stress parameters in an experimental model of sepsis in rats. J Vet Res 64:187–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsiao SY, Kung CT, Su CM, Lai YR, Huang CC, Tsai NW et al (2020) Impact of oxidative stress on treatment outcomes in adult patients with sepsis: a prospective study. Medicine 99:e20872

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun L, Pi D, Zhao L, Wang X, Zhu L, Qi D, Liu Y (2017) Response of selenium and selenogenome in immune tissues to LPS-induced inflammatory reactions in pigs. Biol Trace Elem Res 177:90–96

    Article  CAS  PubMed  Google Scholar 

  32. Akira S (2006) TLR signaling. Curr Top Microbiol Immunol 311:1–16

    CAS  PubMed  Google Scholar 

  33. Al-Dossari M, Fadda L, Attia H, Hasan I, Mahmoud A (2020) Curcumin and selenium prevent lipopolysaccharide/diclofenac-induced liver injury by suppressing inflammation and oxidative stress. Biol Trace Elem Res 196:173–183

    Article  CAS  PubMed  Google Scholar 

  34. Qu J, Wang W, Zhang Q, Li S (2020) Inhibition of lipopolysaccharide-induced inflammation of chicken liver tissue by selenomethionine via TLR4-NF-κB-NLRP3 signaling pathway. Biol Trace Elem Res 195:205–214

    Article  CAS  PubMed  Google Scholar 

  35. Mohammed S, Thadathil N, Selvarani R, Nicklas E, Wang D, Miller B, Richardson A, Deepa S (2021) Necroptosis contributes to chronic inflammation and fibrosis in aging liver. Aging Cell 20:e13512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kearney C, Martin S (2017) An inflammatory perspective on necroptosis. Mol Cell 65:965–973

    Article  CAS  PubMed  Google Scholar 

  37. Shan B, Pan H, Najafov A, Yuan J (2018) Necroptosis in development and diseases. Genes Dev 32:327–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Xu Q, Wang Y, Liang T, Li X, Wang D, Wang X, Zhu H, Xiao K (2021) Necroptosis is active and contributes to intestinal injury in a piglet model with lipopolysaccharide challenge. Cell Death Dis 12:62

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao Z, Zhang Q, Xu C, Wang S, Li J, Liu Z, Li S (2021) Methionine selenium antagonizes LPS-induced necroptosis in the chicken liver via the miR-155/TRAF3/MAPK axis. J Cell Physiol 236:4024–4035

    Article  CAS  Google Scholar 

  40. Wang Y, Chen H, Chang W, Chen R, Xu S, Tao D (2020) Protective effects of selenium yeast against cadmium-induced necroptosis via inhibition of oxidative stress and MAPK pathway in chicken liver. Ecotox Environ Safe 206:111329

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Project of the National Natural Science Foundation of China (no. U22A20517, no. 32272906, and no. 32102566) and the Scientific Research Project of Wuhan Polytechnic University (no. 2022J06).

Author information

Authors and Affiliations

Authors

Contributions

DW and YL designed the study and acquired funding. DW, WX, and YL wrote the manuscript. WX, WH, HZ, and XC conducted the animal trials. XC, YZ, QG, and SC analyzed the parameters and data. DW and YL read and approved the final version.

Corresponding author

Correspondence to Yulan Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dan Wang and Wenshuai Xie share co-first authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Xie, W., He, W. et al. Selenium-Enriched Cardamine violifolia Alleviates LPS-Induced Hepatic Damage and Inflammation by Suppressing TLR4/NODs–Necroptosis Signal Axes in Piglets. Biol Trace Elem Res 202, 527–537 (2024). https://doi.org/10.1007/s12011-023-03713-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03713-0

Keywords

Navigation