Skip to main content
Log in

ERK/PKM2 Is Mediated in the Warburg Effect and Cell Proliferation in Arsenic-Induced Human L-02 Hepatocytes

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study aimed to investigate the potential role of pyruvate kinase M2 (PKM2) and extracellular regulated protein kinase (ERK) in arsenic-induced cell proliferation. L-02 cells were treated with 0.2 and 0.4 μmol/L As3+, glycolysis inhibitor (2-deoxy-D-glucose,2-DG), ERK inhibitor [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)-butadiene, U0126] or transfected with PKM2 plasmid. Cell viability, proliferation, lactate acid production, and glucose intake capacity were determined by CCK-8 assay, EdU assay, lactic acid kit and 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) uptake kit, respectively. Also, levels of PKM2, phospho-PKM2S37, glucose transporter protein 1 (GLUT1), lactate dehydrogenase A (LDHA), ERK, and phospho-ERK were detected using Western blot and the subcellular localization of PKM2 in L-02 cells was detected by immunocytochemistry (ICC). Treatment with 0.2 and 0.4 μmol/L As3+ for 48 h increased the viability and proliferation of L-02 cells, the proportion of 2-NBDG+ cell and lactic acid in the culture medium, and GLUT1, LDHA, PKM2, phospho-PKM2S37, and phospho-ERK levels and PKM2 in nucleus. Compared with the 0.2 μmol/L As3+ treatment group, the lactic acid in the culture medium, cell proliferation and cell viability, and the expression of GLUT1 and LDHA were reduced in the group co-treated with siRNA-PKM2 and arsenic or in the group co-treated with U0126. Moreover, the arsenic-increased phospho-PKM2S37/PKM2 was decreased by U0126. Therefore, ERK/PKM2 plays a key role in the Warburg effect and proliferation of L-02 cells induced by arsenic, and also might be involved in arsenic-induced upregulation of GLUT1 and LDHA. This study provides a theoretical basis for further elucidating the carcinogenic mechanism of arsenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Wang X, Nie Y, Si B, Wang T, Hei TK, Du H, Zhao G, Chen S, Xu A, Liu Y (2021) Silver nanoparticles protect against arsenic induced genotoxicity via attenuating arsenic bioaccumulation and elevating antioxidation in mammalian cells. J Hazard Mater 413:125287. https://doi.org/10.1016/j.jhazmat.2021.125287

    Article  CAS  PubMed  Google Scholar 

  2. Guber RS, Gonzalez Mac Donald M, Aleman MN, Luciardi MC, Mentz P, Wierna A, Ansonnaud C, Garcia V, Ansonnaud AM, Soria A (2021) Evaluation of salivary protein patterns among a rural population exposed and non-exposed to arsenic-contaminated drinking water in areas of Tucumán (Argentina): a pilot study. J Appl Oral Sci 29e:20200939. https://doi.org/10.1590/1678-7757-2020-0939

    Article  CAS  Google Scholar 

  3. Zhang M, Xue Y, Zheng B, Li L, Chu X, Zhao Y, Wu Y, Zhang J, Han X, Wu Z, Chu L (2021) Liquiritigenin protects against arsenic trioxide-induced liver injury by inhibiting oxidative stress and enhancing mTOR-mediated autophagy. Biomed Pharmacother 143:112167. https://doi.org/10.1016/j.biopha.2021.112167

    Article  CAS  PubMed  Google Scholar 

  4. Martinez VD, Lam WL (2021) Health effects associated with pre- and perinatal exposure to arsenic. Front Genet 126:64717. https://doi.org/10.3389/fgene.2021.664717

    Article  CAS  Google Scholar 

  5. Sun M, Tan J, Wang M, Wen W, He Y (2021) Inorganic arsenic-mediated upregulation of AS3MT promotes proliferation of nonsmall cell lung cancer cells by regulating cell cycle genes. Environ Toxicol 36(2):204–212. https://doi.org/10.1002/tox.23026

    Article  CAS  PubMed  Google Scholar 

  6. Cheikhi A, Anguiano T, Lasak J, Qian B, Sahu A, Mimiya H, Cohen CC, Wipf P, Ambrosio F, Barchowsky A (2020) Arsenic stimulates myoblast mitochondrial epidermal growth factor receptor to impair myogenesis. Toxicol Sci 176(1):162–174. https://doi.org/10.1002/tox.23026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sens DA, Park S, Gurel V, Sens MA, Garrett SH, Somji S (2004) Inorganic cadmium- and arsenite-induced malignant transformation of human bladder urothelial cells. Toxicol Sci 79(1):56–63. https://doi.org/10.1093/toxsci/kfh086

    Article  CAS  PubMed  Google Scholar 

  8. Birts CN, Banerjee A, Darley M, Dunlop CR, Nelson S, Nijjar SK, Parker R, West J, Tavassoli A, Rose-Zerilli MJJ, Blaydes JP (2020) p53 is regulated by aerobic glycolysis in cancer cells by the CtBP family of NADH-dependent transcriptional regulators. Sci Signal 13:630. https://doi.org/10.1126/scisignal.aau9529

    Article  CAS  Google Scholar 

  9. Wang W, He X, Wang Y, Liu H, Zhang F, Wu Z, Mo S, Chen D (2022) LINC01605 promotes aerobic glycolysis through LDHA in triple-negative breast cancer. Cancer Sci 113(8):2484. https://doi.org/10.1111/cas.15370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu J, Yuan JF, Wang YZ (2022) METTL3-stabilized lncRNA SNHG7 accelerates glycolysis in prostate cancer via SRSF1/c-Myc axis. Exp Cell Res 416:113149. https://doi.org/10.1016/j.yexcr.2022.113149

    Article  CAS  PubMed  Google Scholar 

  11. He J, Liu W, Ge X, Wang GC, Desai V, Wang S, Mu W, Bhardwaj V, Seifert E, Liu LZ, Bhushan A, Peiper SC, Jiang BH (2019) Arsenic-induced metabolic shift triggered by the loss of miR-199a-5p through Sp1-dependent DNA methylation. Toxicol Appl Pharmacol 378:114606. https://doi.org/10.1016/j.taap.2019.114606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bi Z, Zhang Q, Fu Y, Wadgaonkar P, Zhang W, Almutairy B, Xu L, Rice M, Qiu Y, Thakur C, Chen F (2020) Nrf2 and HIF1α converge to arsenic-induced metabolic reprogramming and the formation of the cancer stem-like cells. Theranostics 10(9):4134–4149. https://doi.org/10.7150/thno.42903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Zhao H, Guo M, Fei D, Zhang L, Xing M (2020) Targeting the miR-122/PKM2 autophagy axis relieves arsenic stress. J Hazard Mater 383:383121217. https://doi.org/10.1111/cas.1537014

    Article  Google Scholar 

  14. Luo F, Liu X, Ling M, Lu L, Shi L, Lu X, Li J, Zhang A, Liu Q (2016) The lncRNA MALAT1, acting through HIF-1α stabilization, enhances arsenite-induced glycolysis in human hepatic L-02 cells. Biochim Biophys Acta 1862(9):1685–1695. https://doi.org/10.1016/j.bbadis.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  15. Takenaka M, Yamada K, Lu T, Kang R, Tanaka T, Noguchi T (1996) Alternative splicing of the pyruvate kinase M gene in a minigene system. Eur J Biochem 235(1-2):366–371. https://doi.org/10.1111/j.1432-1033.1996.00366.x

    Article  CAS  PubMed  Google Scholar 

  16. Kamel R, Schwarzfischer F (1975) Pyruvate kinase isozyme patterns of human neoplastic, fetal and adult tissues. Humangenetik 28(1):65–69. https://doi.org/10.1007/BF00272484

    Article  CAS  PubMed  Google Scholar 

  17. Guguen-Guillouzo C, Szajnert MF, Marie J, Delain D, Schapira F (1977) Differentiation in vivo and in vitro of pyruvate kinase isozymes in rat muscle. Biochimie 59(1):65–71. https://doi.org/10.1016/s0300-9084(77)80087-4

    Article  CAS  PubMed  Google Scholar 

  18. Deberardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7(1):11–20

    Article  CAS  PubMed  Google Scholar 

  19. Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8(1):51–56. https://doi.org/10.1016/j.cmet.2007.10.002

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Lu YF, Wang CS, Xie YX, Zhao YQ, Qian YC, Liu WT, Wang M, Jiang BH (2020) HB-EGF activates the EGFR/HIF-1α pathway to induce proliferation of arsenic-transformed cells and tumor growth. Front. Oncol 10:101019. https://doi.org/10.3389/fonc.2020.01019

    Article  Google Scholar 

  21. Yuan Q, Zhang J, Liu Y, Chen H, Liu H, Wang J, Niu M, Hou L, Wu Z, Chen Z, Zhang J (2022) MyD88 in myofibroblasts regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. The Journal of patho 256(4):414–426. https://doi.org/10.1002/path.5856

    Article  CAS  Google Scholar 

  22. Lee K, Nam K, Oh S, Lim J, Lee T, Shin I (2015) ECM1 promotes the Warburg effect through EGF-mediated activation of PKM2. Cellular signal 27(2):228–235. https://doi.org/10.1016/j.cbi.2005.04.004

    Article  CAS  Google Scholar 

  23. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia S, Chakravarty D, Daian F, Gao Q, Bailey MH, Liang WW, Foltz SM, Shmulevich I, Ding L, Heins Z et al (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell 173(2):321–337.e310. https://doi.org/10.1016/j.cell.2018.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 35(6):600–604. https://doi.org/10.3109/10799893.2015.1030412

    Article  CAS  PubMed  Google Scholar 

  25. Lee C, Lee Y, Rice R (2005) Human epidermal cell protein responses to arsenite treatment in culture. Chemico-biological interactions 155.1:15543–15554. https://doi.org/10.1016/j.cbi.2005.04.004

    Article  CAS  Google Scholar 

  26. Zhao F, Severson P, Pacheco S, Futscher B, Klimecki W (2013) Arsenic exposure induces the Warburg effect in cultured human cells. Toxicol Appl Pharmacol 271(1):72–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruan Y, Fang X, Guo T, Liu Y, Hu Y, Wang X, Hu Y, Gao L, Li Y, Pi J, Xu Y (2022) Metabolic reprogramming in the arsenic carcinogenesis. Ecotoxicol. Environ Saf 229:229113098. https://doi.org/10.1016/j.taap.2013.04.020

    Article  CAS  Google Scholar 

  28. Kumar Y, Tapuria N, Kirmani N, Davidson B (2007) Tumour M2-pyruvate kinase: a gastrointestinal cancer marker. Eur J Gastroenterol Hepatol 19(3):265–276. https://doi.org/10.1097/MEG.0b013e3280102f78

    Article  CAS  PubMed  Google Scholar 

  29. Otto A (2016) Warburg effect(s)-a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer & metabolism 4:45. https://doi.org/10.1186/s40170-016-0145-9

    Article  Google Scholar 

  30. Wu S, Le H (2013) Dual roles of PKM2 in cancer metabolism. Acta biochimica et biophysica Sinica 45(1):27–35. https://doi.org/10.1097/MEG.0b013e3280102f78

    Article  CAS  PubMed  Google Scholar 

  31. Wang L, Lu Y, Wang C, Xie Y, Zhao Y, Qian Y, Liu W, Wang M, Jiang B (2020) HB-EGF activates the EGFR/HIF-1α pathway to induce proliferation of arsenic-transformed cells and tumor growth. Frontiers in oncology 10:101019. https://doi.org/10.3389/fonc.2020.01019

    Article  Google Scholar 

  32. Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker E, Ralser M, Cramer T, Adjaye J (2014) HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem cells (Dayton, Ohio) 32(2):364–376. https://doi.org/10.1002/stem.1552

    Article  CAS  PubMed  Google Scholar 

  33. Yang W, Zheng Y, Xia Y, Ji H, Chen X, Guo F, Lyssiotis C, Aldape K, Cantley L, Lu Z (2012) ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nature cell bio 14(12):1295–1304. https://doi.org/10.1002/stem.1552

    Article  CAS  Google Scholar 

  34. Christofk H, Vander Heiden M, Harris M, Ramanathan A, Gerszten R, Wei R, Fleming M, Schreiber S, Cantley L (2008) The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452(7184):230–233. https://doi.org/10.1016/j.cmet.2015.01.017

    Article  CAS  PubMed  Google Scholar 

  35. Brinck U, Eigenbrodt E, Oehmke M, Mazurek S, Fischer G (1994) L- and M2-pyruvate kinase expression in renal cell carcinomas and their metastases. Virchows Archiv : an int j pathol 424(2):177–185. https://doi.org/10.1007/BF00193498

    Article  CAS  Google Scholar 

  36. Wong N, Ojo D, Yan J, Tang D (2015) PKM2 contributes to cancer metabolism. Cancer lett 356:356184–356191. https://doi.org/10.1016/j.canlet.2014.01.031

    Article  CAS  Google Scholar 

  37. Liu Y, Song D, Liang D, Li Y, Yan Y, Sun H, Zhang M, Hu J, Zhao Y, Liang Y, Li Y, Yang Z, Wang R, Zheng H, Wang P, Xie S (2022) Oncogenic TRIB2 interacts with and regulates PKM2 to promote aerobic glycolysis and lung cancer cell procession. Cell death disc 8(1):306. https://doi.org/10.1038/s41420-022-01095-1

    Article  CAS  Google Scholar 

  38. Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K, Lu Z (2017) Corrigendum: nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature 550(7674):142. https://doi.org/10.1038/nature24008

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Liu J, Jin X, Zhang D, Li D, Hao F, Feng Y, Gu S, Meng F, Tian M, Zheng Y, Xin L, Zhang X, Han X, Aravind L, Wei M (2017) O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. PNAS 114(52):13732–13737. https://doi.org/10.1073/pnas.1704145115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liang Y, Qian Y, Tang J, Yao C, Yu S, Qu J, Wei H, Chen G, Han Y (2022) Arsenic trioxide promotes ERK1/2-mediated phosphorylation and degradation of BIM to attenuate apoptosis in BEAS-2B cells. Chem Biol Interact 369:110304. https://doi.org/10.1016/j.cbi.2022.110304

    Article  CAS  PubMed  Google Scholar 

  41. Wang D, Xu H, Fan L, Ruan W, Song Q, Diao H, He R, Jin Y (2022) Hyperphosphorylation of EGFR/ERK signaling facilitates long-term arsenite-induced hepatocytes epithelial-mesenchymal transition and liver fibrosis in sprague-dawley rats. Ecotoxicology and environmental safety 249:114386. https://doi.org/10.1016/j.cbi.2022.110304

    Article  CAS  PubMed  Google Scholar 

  42. Jin P, Zhou Q, Xi S (2022) Low-dose arsenite causes overexpression of EGF, TGFα, and HSP90 through Trx1-TXNIP-NLRP3 axis mediated signaling pathways in the human bladder epithelial cells. Ecotoxicology and environmental safety 247:114263. https://doi.org/10.1016/j.ecoenv.2022.114263

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81673109) and the National Natural Science Foundation of China (No. 81830099).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yanmei Yang or Yanhui Gao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Fig. S1:

2-DG antagonized low dose of arsenic-induced proliferation of L-02 cells. The effects of 0.2 μmol/L As3+ and/or 2-DG were detested using the Cell-Light EdU Apollo in vitro imaging kit. Data from three independent experiment are shown. *p<0.05 vs. control group. (PNG 728 kb)

High resolution image (TIF 2.98 mb)

Fig. S2:

U0126 inhibited the activation of ERK signaling pathway induced by low dose of arsenic. a The effects of treatment with 0.4 μmol/L As3+ on the level of phospho-ERK and ERK were detected using Western blot. Data from three independent experiment are shown; b The effects of 0.2 μmol/L As3+and/or U0126 were detected using Western blot. Data from three independent experiment are shown. *p<0.05 vs. control group. (PNG 368 kb)

High resolution image (TIF 1.18 mb)

Fig. S3:

U0126 antagonized low dose of arsenic-induced proliferation of L-02 cells. The effects of 0.2 μmol/L As3+ and/or U0126 were detested using the Cell-Light EdU Apollo in vitro imaging kit. Data from three independent experiment are shown. *p<0.05 vs. control group. (PNG 1139 kb)

High resolution image (TIF 121401 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, F., Zhang, X., Zhang, Z. et al. ERK/PKM2 Is Mediated in the Warburg Effect and Cell Proliferation in Arsenic-Induced Human L-02 Hepatocytes. Biol Trace Elem Res 202, 493–503 (2024). https://doi.org/10.1007/s12011-023-03706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03706-z

Keywords

Navigation