Skip to main content
Log in

An Investigation into the Protective Effects of Various Doses of Boric Acid on Liver, Kidney, and Brain Tissue Damage Caused by High Levels of Acute Alcohol Consumption

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Acute high-dose alcohol consumption can lead to oxidative stress, which can cause harm to organs. In this study we aim to determine whether administering boric acid (BA) can protect certain organs (liver, kidney, and brain) from the damaging effects of alcohol by reducing oxidative stress. We used 50 and 100 mg/kg of BA. Thirty-two Sprague Dawley (12–14-week-old) male rats in our study were separated into four groups (n=8); control, ethanol, ethanol+50 mg/kg BA, and ethanol+100 mg/kg BA groups. Acute ethanol was given to rats by gavage at 8 g/kg. BA doses were given by gavage 30 min before ethanol administration. Alanine transaminase (ALT) and aspartate transaminase (AST) measurements were made in blood samples. The total antioxidant status (TAS), total oxidant status (TOS), OSI (oxidative stress index) (TOS/TAS), malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were measured to determine the oxidative stress induced by high-dose acute ethanol in the liver, kidney, and brain tissue, and the antioxidant effects of BA doses. According to our biochemical results, acute high-dose ethanol increases oxidative stress in liver, kidney, and brain tissues, while BA reduces the damage in tissues with its antioxidant effect. For the histopathological examinations, hematoxylin-eosin staining was performed. As a result, we found that the effect of alcohol-induced oxidative stress on liver, kidney, and brain tissues was different, and that giving boric acid reduces the increased oxidative stress in tissues due to its antioxidant effect. It was found that 100mg/kg BA administration had a higher antioxidant effect than in the 50mg/kg group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Liu F, Gao X, Li Z, Zhang X, Fan H, Yu G, Bello BK, Feng X, Li D, Teng D, Chen Y, Zhao P, Fu M, Dong J (2022) Protective effects of scutellarin on acute alcohol intestinal injury. Chem Biodivers 19(4):e20210085. https://doi.org/10.1002/cbdv.202100856

    Article  CAS  Google Scholar 

  2. Hyun J, Han J, Lee C, Yoon M, Jung Y (2021) Pathophysiological aspects of alcohol metabolism in the liver. Int J Mole Sci 22:5717. https://doi.org/10.3390/ijms22115717

    Article  CAS  Google Scholar 

  3. Obad A, Peeran A, Little JI, Haddad GE, Tarzami ST (2018) Alcohol-mediated organ damages: heart and brain. Front Pharmacol 13:9. https://doi.org/10.3389/fphar.2018.00081

    Article  CAS  Google Scholar 

  4. Saravanan N, Nalin N (2007) Impact of Hemidesmus indicus R.Br. extract on ethanol-mediated oxidative damage in rat kidney. Redox Rep 12:5. https://doi.org/10.1179/135100007X200290

    Article  Google Scholar 

  5. Das SK, Vasudevan DM (2008) Alcohol induced effects on kidney. Ind J Clin Biochem 23(1):4–9. https://doi.org/10.1007/s12291-008-0003-9

    Article  CAS  Google Scholar 

  6. Massaad CA, Klann E (2011) Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 14:2013–2054. https://doi.org/10.1089/ars.2010.3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jung MK, Callaci JJ, Lauing KL, Otis JS, Radek KA, Jones MK, Kovacs EJ (2011) Alcohol exposure and mechanisms of tissue injury and repair. Alcohol Clin Exp Res 35(3):392. https://doi.org/10.1111/j.1530-0277.2010.01356

    Article  CAS  PubMed  Google Scholar 

  8. Kasdallah-Grissaa A, Mornaguia B, Aouania E, Hammamib M, El Mayc M, Gharbia N, Kamouna A, El-Fazaâ S (2007) Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci 80(11):1033–1039. https://doi.org/10.1016/j.lfs.2006.11.044

    Article  CAS  Google Scholar 

  9. Tanrıverdi DT (2019) Sıçanlarda siklofosfamid nedenli mesane hasarı üzerine borik asidin koruyucu etkisi. Yüksek Lisans Tezi, Biyoloji Anabilim Dalı, Eskişehir Osmangazi Üniversitesi

    Google Scholar 

  10. Nielsen FH (2008) Is boron nutritionally relevant? Nutr Rev 66(4):183–191. https://doi.org/10.1111/j.1753-4887.2008.00023.x

    Article  Google Scholar 

  11. Hacıoğlu C, Kar F, Şenturk H (2018) Renal iskemi/reperfüzyon hasarına karşı borik asidin elektrolit dengesi ve lipit profili üzerine etkileri. Biyolojik Çeşitlilik ve Koruma 11(2):76–81

    Google Scholar 

  12. Hacioglu C, Kar F, Kar E, Kara Y, Kanbak G (2021) Effects of curcumin and boric acid against neurodegenerative damage induced by amyloid beta (1-42). Biol Trace Elem Res 199(10):3793–3800. https://doi.org/10.1007/s12011-020-02511-2

    Article  CAS  PubMed  Google Scholar 

  13. Şentürk H, Fatih K, Hacioğlu C, Kanbak G (2018) Renal iskemi-reperfüzyon ile indüklenmiş oksidatif stres hasarının pankreas üzerine etkisi: Doza bağımlı borik asitin rolü. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 21(6):944–949

    Article  Google Scholar 

  14. Kartkaya K, Kanbak G, Oğlakçı A, Burukoğlu D, Ozer MC (2014) Protective effect of calpain inhibitor N-acetyl-L-leucyl-L-leucyl-Lnorleucinal on acute alcohol consumption related cardiomyopathy. Mol Biol Rep 41:6743–6753. https://doi.org/10.1007/s11033-014-3560-4

    Article  CAS  PubMed  Google Scholar 

  15. Kar F, Hacioglu C, Senturk H, Db D, Kanbak G (2020) The role of oxidative stress, renal inflammation, and apoptosis in post ischemic reperfusion injury of kidney tissue: the protective effect of dose-dependent boric acid administration. Biol Trace Elem Res 195(1):150–158. https://doi.org/10.1007/s12011-019-01824-1

    Article  CAS  PubMed  Google Scholar 

  16. Ohkawa H, Ohisi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  17. Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    Article  CAS  PubMed  Google Scholar 

  18. Massey VL, Arteel GE (2012) Acute alcohol-induced liver injury. Front. Physiol 3:193. https://doi.org/10.3389/fphys.2012.00193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Du J, He D, Sun LN, Han T, Zhang H, Qin LP, Rahman K (2012) Semen Hoveniae extract protects against acute alcohol-induced liver injury in mice. Pharmaceutical Biol 48(8):953–958. https://doi.org/10.3109/13880200903300196

    Article  Google Scholar 

  20. Souli A, Sebai H, Chehimi L, Rtibi K, Tounsi H, Boubaker S, Sakly M, El-Benna J, Amri M (2015) Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat. Toxicol Indust Health 31(9):802–810. https://doi.org/10.1177/0748233713475506

    Article  CAS  Google Scholar 

  21. Türkez H, Geyikoğlu F, Çolak S (2011) The protective effect of boric acid on aluminum-induced hepatotoxicity and genotoxicity in rats. Turk J Biol 35:293–301. https://doi.org/10.3906/biy-0902-11

    Article  CAS  Google Scholar 

  22. Kan F (2022) Hipotiroidi oluşturulan ratlarda borun tiroid fonksiyonları ve biyokimyasal parametreler üzerine etkisinin arattırılması. Afyon Kocatepe Üniversitesi, Sağlık Bilimleri Enstitüsü Biyokimya Anabilim Dalı, Doktora Tez

    Google Scholar 

  23. Sweilum OAH, Kandeel FS, Noya DAR (2017) Management of acute alumınum phosphide toxicity in rat model with a novel intervention, a trıal of boric acid. Egypt J Forensic Sci Appli Toxicol 17:57. https://doi.org/10.21608/EJFSAT.2017.46121

    Article  Google Scholar 

  24. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Hind Oxid Med Cell Long 13. https://doi.org/10.1155/2019/5080843

  25. Karademirci MM (2016) Sigara içen ve içmeyen erkeklerde vitamin e, vitamin c ile total antioksidan status (tas), total oksidan status (tos) düzeylerinin değerlendirilmesi. Necmettin Erbakan Üniversitesi, Meram Tip Fakültesi Aile Hekimliği Anabilim Dali, Uzmanlık Tezi

    Google Scholar 

  26. Ince S, Kucukkurt I, Cigerci IH, Fatih Fidan A, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol 24(3):161–164. https://doi.org/10.1016/j.jtemb.2010.01.003

    Article  CAS  PubMed  Google Scholar 

  27. Kizilay Z, Erken HA, Cetin NK, Aktas S, Abas BI, Yilmaz A (2016) Boric acid reduces axonal and myelin damage in experimental sciatic nerve injury. Neural Regen Res 11(10):1660–1665. https://doi.org/10.4103/1673-5374.193247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sogut I, Oglakcı A, Kartkaya K, Kusat Ol K, Savasan Sogut M, Kanbak G, Erden Inal M (2015) Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome. Exp Therap Med 9:1023–1027. https://doi.org/10.3892/etm.2014.2164

    Article  CAS  Google Scholar 

  29. Mas-Bargues C, Escrivá C, Dromant M, Borrás C, Viña J (2021) Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Hum Plasm Ref Values Health Dis, Arch Biochem Biophys 30:709. https://doi.org/10.1016/j.abb.2021.108941

    Article  CAS  Google Scholar 

  30. Samuhasaneeto S, Punsawad C, Chaniad P (2022) Protective effects of Glochidion wallichianum Mull. Arg. on ethanol-induced liver injury in rats. Trends Sci 19(12):4609. https://doi.org/10.48048/tis.2022.4609

    Article  Google Scholar 

  31. Karabag Coban F, Ince S, Kucukkurt I, Demirel HH, Hazman O (2015) Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem Toxicol 38(4):391–399. https://doi.org/10.3109/01480545.2014.974109

    Article  CAS  Google Scholar 

  32. Kucukkurt I, Ince S, Demirel HH, Turkmen R, Akbel E, Celik Y (2015) The effects of boron on arsenicinduced lipid peroxidation and antioxidant status in male and female rats. J Biochem Mol Toxicol 29(12):564–571. https://doi.org/10.1002/jbt.21729

    Article  CAS  PubMed  Google Scholar 

  33. Airaodion AI, Ogbuagu EO, Ogbuagu U, Adeniji AR, Agunbiade AP, Airaodion EO (2019) Hepatoprotective effect of parkia biglobosa on acute ethanol-induced oxidative stress in wistar rats. Int Res J Gastroenterol Hepatol 2(1):1–11

    Google Scholar 

  34. Das SK, Vasudevan DM (2005) Effect of ethanol on liver antioxidant defense systems: a dose dependent study. Indian J Clin Biochem 20:80–84. https://doi.org/10.1007/BF02893047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kołota A (2020) The effect of ethanol on the mechanisms of liver antioxidant defence—a review of rodent model studies. Alcohol Drug Addict 33(1):79–94. https://doi.org/10.5114/ain.2020.95981

    Article  Google Scholar 

  36. Sogut I, Paltun SO, Tuncdemir M, Ersoz M, Hurdag C (2018) The antioxidant and antiapoptotic effect of boric acid on hepatoxicity in chronic alcohol-fed rats. Can J Physiol Pharmacol 96(4):404. https://doi.org/10.1139/cjpp-2017-0487

    Article  CAS  PubMed  Google Scholar 

  37. Stickel F, Hoehn B, Schuppan D, Seitz H (2003) Nutritional therapy in alcoholic liver disease. Aliment Pharmacol Therap 18(4):357–373. https://doi.org/10.1046/j.1365-2036.2003.01660.x

    Article  CAS  Google Scholar 

  38. Zahr NM, Mayer D, Vinco S, Orduna J, Luong R, Sullivan EV, Pfefferbaum A (2009) In vivo evidence for alcohol-induced neurochemical changes in rat brain without protracted withdrawal, pronounced thiamine deficiency, or severe liver damage. Neuropsychopharmacology 34(6):1427–1442. https://doi.org/10.1038/npp.2008

    Article  CAS  PubMed  Google Scholar 

  39. Powell EE, Jonsson JR, Clouston AD (2005) Steatosis: co-factor in other liver diseases. Hepatology 42(1):5–13. https://doi.org/10.1002/hep.20750

    Article  CAS  PubMed  Google Scholar 

  40. Cengiz M, Ayhanci A, Şahin İK AE, Gür F, Bayrakdar A, Gür B (2022) The role of Bax/Bcl-2 and Nrf2-Keap-1 signaling pathways in mediating the protective effect of boric acid on acrylamide-induced acute liver injury in rats. Life Sciences 307:120864. https://doi.org/10.1016/j.lfs.2022.120864

    Article  CAS  PubMed  Google Scholar 

  41. Cikler-Dulger E, Sogut I (2020) Investigation of the protective effects of boric acid on ethanol induced kidney injury. Biotech Histochem 95(3):186–193. https://doi.org/10.1080/10520295.2019.1662086

    Article  CAS  PubMed  Google Scholar 

  42. Rodrigo R, Rivera G, Orellana M, Araya J, Bosco C (2002) Rat kidney antioxidant response to long-term exposure to flavonol rich red wine. Life Sci 71:2881–2895. https://doi.org/10.1016/s0024-3205(02)02140-9

    Article  CAS  Google Scholar 

  43. Jurczuk M, Brzóska MM, Moniuszko-Jakoniuk J, Gałażyn-Sidorczuk M, Kulikowska-Karpińska E (2004) Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem Toxicol 42:429–438. https://doi.org/10.1016/j.fct.2003.10.005

    Article  CAS  PubMed  Google Scholar 

  44. Dinu D, Nechifor MT, Movileanu L (2005) Ethanol-induced alterations of the antioxidant defense system in rat kidney. J Biochem Mole Toxicol 19:6. https://doi.org/10.1002/jbt.20101

    Article  CAS  Google Scholar 

  45. Husain K, Scott BR, Reddy SK, Somani SM (2001) Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system. Alcohol 25:89–97. https://doi.org/10.1016/s0741-8329(01)00176-8

    Article  CAS  PubMed  Google Scholar 

  46. Ozbek E (2012) Induction of oxidative stress in kidney. Hind Pub Corp Int J Nephrol 9. https://doi.org/10.1155/2012/465897

  47. Geyikoglu F, Koc K, Colak S, Erol HS, Cerig S, Kavakcioglu Yardimci B, Cakmak O, Dortbudak MB, Eser G, Aysin F, Ozek NŞ, Yildirim S (2019) Propolis and its combination with boric acid protect against ischemia/reperfusion-induced acute kidney injury by inhibiting oxidative stress, inflammation, DNA damage, and apoptosis in rats. Biol Trace Elem Res 192(2):214–221. https://doi.org/10.1007/s12011-019-1649-2

    Article  CAS  PubMed  Google Scholar 

  48. Sriset Y, Sukkasem N, Chatuphonprasert W, Jarukamjorn K (2022) Nephroprotective effects of hesperidin and myricetin against high-fat diet plus ethanol-induced renal oxidative damage in mice. Revista Brasileira de Farmacognosia 32:555–562. https://doi.org/10.1007/s43450-022-00275-5

    Article  CAS  Google Scholar 

  49. Yang Q, Wang Y, Chen H, Fan H, Zhang X, Bello BK, Liu G, Feng X, Teng D, Chen Y, Zhao P, Dong J (2022) Protective activities of scutellarin against alcohol-induced acute kidney injury. Chem Biodivers 19(11):e202200254. https://doi.org/10.1002/cbdv.202200254

    Article  CAS  PubMed  Google Scholar 

  50. Cortez I, Brocardo PS, Leasure JL (2021) Changes in affective behavior and oxidative stress after binge alcohol in male and female rats. Brain Sci 11:1250. https://doi.org/10.3390/brainsci11091250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sarıca ZS, Eren M, Senturk M (2019) Effect of boron on the potassium dichromate induced oxidative damage in brain tissue of sprague dawley rats. Pakistan J Zool 51(5):905–1910. https://doi.org/10.17582/journal.pjz/2019.51.5.1905.1910

    Article  CAS  Google Scholar 

  52. Oyenihia OR, Afolabia BA, Oyenihib AB, Ogunmokuna OJ, Oguntibejuc OO (2016) Hepato- and neuro-protective effects of watermelon juice on acute ethanol-induced oxidative stress in rats. Toxicol Rep 3:288–294. https://doi.org/10.1016/j.toxrep.2016.01.003

    Article  CAS  Google Scholar 

  53. Ataizi ZS, Ozkoc M, Kanbak G, Karimkhani H, Donmez DB, Ustunisik N, Ozturk B (2019) Evaluation of the neuroprotective role of boric acid in preventing traumatic brain injury-mediated oxidative stress. Turkish Neurosurg 31(4). https://doi.org/10.5137/1019-5149

Download references

Funding

The study was funded by the Cankiri Karatekin University’s Scientific Research Projects Commission, with the project number 2021/EYO210621B14.

Author information

Authors and Affiliations

Authors

Contributions

A.O.İ., B.C., F.K., and İ.S designed the study. A.O.İ., B.C., F.K., and İ.S. performed surgical operations. A.O.İ., B.C., F.K., İ.S., and G.K. analyzed biochemical experiments. A.Ç.G. performed histological analyses. A.O.İ interpreted the statistical data. A.O.İ. wrote the paper and interpreted the data. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ayşegül Oğlakçı İlhan.

Ethics declarations

Ethics Approval

All animal research protocols in this study were approved by the Institutional Ethics Committee (HADYEK, Protocol 827/2021).

Consent for Publication

All of the authors gave consent for the manuscript to be published by the corresponding author.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

İlhan, A.O., Can, B., Kar, F. et al. An Investigation into the Protective Effects of Various Doses of Boric Acid on Liver, Kidney, and Brain Tissue Damage Caused by High Levels of Acute Alcohol Consumption. Biol Trace Elem Res 201, 5346–5357 (2023). https://doi.org/10.1007/s12011-023-03699-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03699-9

Keywords

Navigation