Skip to main content

Advertisement

Log in

Associations of Serum Iron Status with MAFLD and Liver Fibrosis in the USA: a Nationwide Cross-Section Study

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a new terminology characterized by liver steatosis. Iron status is related to many metabolic diseases. However, the researches on the associations of serum iron status with MAFLD are limited. The objective of this study was to investigate the associations of serum iron status biomarkers with MAFLD and liver fibrosis. A total of 5892 adults were enrolled in the current cross-sectional study using the 2017-March 2020 National Health and Nutrition Examination Survey. Liver steatosis and liver fibrosis were defined by the median values of controlled attenuation parameter ≥ 274 dB/m and liver stiffness measurement ≥ 8 kPa, respectively. The multivariable logistic/linear regression and restricted cubic spline analysis were conducted. After adjusting for potential confounders, higher ferritin levels were associated with higher odds of MAFLD (OR 4.655; 95% CI 2.301, 9.418) and liver fibrosis (OR 7.013; 95% CI 3.910, 12.577). Lower iron levels were associated with a higher prevalence of MAFLD (OR 0.622; 95% CI 0.458, 0.844) and liver fibrosis (OR 0.722; 95% CI 0.536, 0.974). Lower transferrin saturation (TSAT) was associated with a higher prevalence of MAFLD (OR 0.981; 95% CI 0.970, 0.991) and liver fibrosis (OR 0.988; 95% CI 0.979, 0.998). Higher ferritin levels, lower iron levels, and TSAT were associated with a higher prevalence of MAFLD and liver fibrosis. This study extended the knowledge of modifying iron status to prevent MAFLD and liver fibrosis. More prospective and mechanism studies were warranted to confirm the conclusions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from NHANES, which is available publicly at https://www.cdc.gov/nchs/nhanes/.

Abbreviations

NHANES:

National Health and Nutrition Examination Surveys

NCHS:

National Center for Health Statistics

MEC:

Mobile examination center

MAFLD:

Metabolic-associated fatty liver disease

NAFLD:

Non-alcoholic fatty liver disease

VCTE:

Vibration-controlled transient elastography

CAP:

Controlled attenuation parameter

LSM:

Liver stiffness measurement

BMI:

Body mass index

HOMA-IR:

Homeostasis model assessment-insulin resistance

T2DM:

Type 2 diabetes mellitus

OR:

Odds ratio

FPG:

Fasting plasma glucose

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

TSAT:

Transferrin saturation

References

  1. Golabi P, Otgonsuren M, Cable R, Felix S, Koenig A, Sayiner M, Younossi ZM (2016) Non-alcoholic fatty liver disease (NAFLD) is associated with impairment of health related quality of life (HRQOL). Health Qual Life Outcomes 14:18. https://doi.org/10.1186/s12955-016-0420-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, Racila A, Hunt S, Beckerman R (2016) The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology 64(5):1577–1586. https://doi.org/10.1002/hep.28785

    Article  PubMed  Google Scholar 

  3. Sadighara P, Abedini AH, Irshad N, Ghazi-Khansari M, Esrafili A, Yousefi M (2023) Association between non-alcoholic fatty liver disease and heavy metal exposure: a systematic review. Biol Trace Elem Res. https://doi.org/10.1007/s12011-023-03629-910.1007/s12011-023-03629-9.

  4. Armandi A, Bugianesi E (2021) Natural history of NASH. Liver Int 41(Suppl 1):78–82. https://doi.org/10.1111/liv.14910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eslam M, Sanyal AJ, George J, International Consensus P (2020) MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158(7):1999-2014 e1. https://doi.org/10.1053/j.gastro.2019.11.312

    Article  CAS  PubMed  Google Scholar 

  6. Yamamura S, Eslam M, Kawaguchi T, Tsutsumi T, Nakano D, Yoshinaga S, Takahashi H, Anzai K, George J, Torimura T (2020) MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int 40(12):3018–3030. https://doi.org/10.1111/liv.14675

    Article  CAS  PubMed  Google Scholar 

  7. Kim D, Konyn P, Sandhu KK, Dennis BB, Cheung AC, Ahmed A (2021) Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J Hepatol 75(6):1284–1291. https://doi.org/10.1016/j.jhep.2021.07.035

    Article  CAS  PubMed  Google Scholar 

  8. Kowdley KV, Belt P, Wilson LA, Yeh MM, Neuschwander-Tetri BA, Chalasani N, Sanyal AJ, Nelson JE, Network NCR (2012) Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 55(1):77–85. https://doi.org/10.1002/hep.24706

    Article  CAS  PubMed  Google Scholar 

  9. Kang W, Barad A, Clark AG, Wang Y, Lin X, Gu Z, O’brien KO, (2021) Ethnic differences in iron status. Adv Nutr 12(5):1838–1853. https://doi.org/10.1093/advances/nmab035

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kalantar-Zadeh K, Rodriguez RA, Humphreys MH (2004) Association between serum ferritin and measures of inflammation, nutrition and iron in haemodialysis patients. Nephrol Dial Transplant 19(1):141–149. https://doi.org/10.1093/ndt/gfg493

    Article  CAS  PubMed  Google Scholar 

  11. Li X, He T, Yu K, Lu Q, Alkasir R, Guo G, Xue Y (2018) Markers of iron status are associated with risk of hyperuricemia among Chinese adults: nationwide population-based study. Nutrients 10(2). https://doi.org/10.3390/nu10020191.

  12. Jung JY, Shim JJ, Park SK, Ryoo JH, Choi JM, Oh IH, Jung KW, Cho H, Ki M, Won YJ, Oh CM (2019) Serum ferritin level is associated with liver steatosis and fibrosis in Korean general population. Hepatol Int 13(2):222–233. https://doi.org/10.1007/s12072-018-9892-8

    Article  PubMed  Google Scholar 

  13. Hernandez-Aguilera A, Casacuberta N, Castane H, Fibla M, Fernandez-Arroyo S, Fort-Gallifa I, Paris M, Sabench F, Del Castillo D, Baiges-Gaya G, Rodriguez-Tomas E, Sans T, Camps J, Joven J (2021) Nonalcoholic steatohepatitis modifies serum iron-related variables in patients with morbid obesity. Biol Trace Elem Res 199(12):4555–4563. https://doi.org/10.1007/s12011-021-02610-8

    Article  CAS  PubMed  Google Scholar 

  14. Iwasaki T, Nakajima A, Yoneda M, Yamada Y, Mukasa K, Fujita K, Fujisawa N, Wada K, Terauchi Y (2005) Serum ferritin is associated with visceral fat area and subcutaneous fat area. Diabetes Care 28(10):2486–2491. https://doi.org/10.2337/diacare.28.10.2486

    Article  CAS  PubMed  Google Scholar 

  15. Lombardi R, Pisano G, Fargion S (2016) Role of serum uric acid and ferritin in the development and progression of NAFLD. Int J Mol Sci 17(4):548. https://doi.org/10.3390/ijms17040548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67(1):328–357. https://doi.org/10.1002/hep.29367

    Article  PubMed  Google Scholar 

  17. Eddowes PJ, Sasso M, Allison M, Tsochatzis E, Anstee QM, Sheridan D, Guha IN, Cobbold JF, Deeks JJ, Paradis V, Bedossa P, Newsome PN (2019) Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology 156(6):1717–1730. https://doi.org/10.1053/j.gastro.2019.01.042

    Article  PubMed  Google Scholar 

  18. FibroScan® procedure for users. [cited; Available from: https://www.echosens.com/fibroscanprocedure/. Accessed 14 July 2022

  19. Truong E, Yeo YH, Cook-Wiens G, Muthiah M, Yang JD, Sundaram V, Chang D, Todo T, Kim IK, Lu SC, Setiawan VW, Wong VWS, Harrison SA, Alkhouri N, Noureddin M (2022) Nonalcoholic fatty liver disease prevalence and severity in Asian Americans from the National Health and Nutrition Examination Surveys 2017–2018. Hepatol Commun. https://doi.org/10.1002/hep4.198110.1002/hep4.1981.

  20. Ciardullo S, Bianconi E, Zerbini F, Perseghin G (2021) Current type 2 diabetes, rather than previous gestational diabetes, is associated with liver disease in U.S. Women. Diabetes Res Clin Pract 177:108879. https://doi.org/10.1016/j.diabres.2021.108879

    Article  CAS  PubMed  Google Scholar 

  21. Ciardullo S, Muraca E, Zerbini F, Manzoni G, Perseghin G (2021) NAFLD and liver fibrosis are not associated with reduced femoral bone mineral density in the general US population. J Clin Endocrinol Metab 106(8):e2856–e2865. https://doi.org/10.1210/clinem/dgab262

    Article  PubMed  Google Scholar 

  22. Ciardullo S, Monti T, Grassi G, Mancia G, Perseghin G (2021) Blood pressure, glycemic status and advanced liver fibrosis assessed by transient elastography in the general United States population. J Hypertens 39(8):1621–1627. https://doi.org/10.1097/HJH.0000000000002835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang X, Heredia NI, Balakrishnan M, Thrift AP (2021) Prevalence and factors associated with NAFLD detected by vibration controlled transient elastography among US adults: results from NHANES 2017–2018. PLoS One 16(6):e0252164. https://doi.org/10.1371/journal.pone.0252164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lomonaco R, Godinez Leiva E, Bril F, Shrestha S, Mansour L, Budd J, Portillo Romero J, Schmidt S, Chang KL, Samraj G, Malaty J, Huber K, Bedossa P, Kalavalapalli S, Marte J, Barb D, Poulton D, Fanous N, Cusi K (2021) Advanced liver fibrosis is common in patients with type 2 diabetes followed in the outpatient setting: the need for systematic screening. Diabetes Care 44(2):399–406. https://doi.org/10.2337/dc20-1997

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM, Kawaguchi T, Arrese M, Valenti L, Shiha G, Tiribelli C, Yki-Jarvinen H, Fan JG, Gronbaek H, Yilmaz Y, Cortez-Pinto H, Oliveira CP, Bedossa P, Adams LA, Zheng MH, Fouad Y, Chan WK, Mendez-Sanchez N, Ahn SH, Castera L, Bugianesi E, Ratziu V, George J (2020) A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 73(1):202–209. https://doi.org/10.1016/j.jhep.2020.03.039

    Article  PubMed  Google Scholar 

  26. Kawaguchi T, Tsutsumi T, Nakano D, Torimura T (2022) MAFLD: renovation of clinical practice and disease awareness of fatty liver. Hepatol Res 52(5):422–432. https://doi.org/10.1111/hepr.13706

    Article  PubMed  Google Scholar 

  27. Wan H, Wang Y, Zhang H, Zhang K, Chen Y, Chen C, Zhang W, Xia F, Wang N, Lu Y (2022) Chronic lead exposure induces fatty liver disease associated with the variations of gut microbiota. Ecotoxicol Environ Saf 232:113257. https://doi.org/10.1016/j.ecoenv.2022.113257

    Article  CAS  PubMed  Google Scholar 

  28. Yeh KT, Lee RP, Chen IH, Yu TC, Peng CH, Liu KL, Wang JH, Wu WT (2018) Are there age- and sex-related differences in spinal sagittal alignment and balance among Taiwanese asymptomatic adults? Clin Orthop Relat Res 476(5):1010–1017. https://doi.org/10.1007/s11999.0000000000000140

    Article  PubMed  PubMed Central  Google Scholar 

  29. Singh A, Amin H, Garg R, Gupta M, Lopez R, Alkhouri N, A MC, (2020) Increased prevalence of obesity and metabolic syndrome in patients with alcoholic fatty liver disease. Dig Dis Sci 65(11):3341–3349. https://doi.org/10.1007/s10620-020-06056-1

    Article  CAS  PubMed  Google Scholar 

  30. Morwald K, Aigner E, Bergsten P, Brunner SM, Forslund A, Kullberg J, Ahlstrom H, Manell H, Roomp K, Schutz S, Zsoldos F, Renner W, Furthner D, Maruszczak K, Zandanell S, Weghuber D, Mangge H (2020) Serum ferritin correlates with liver fat in male adolescents with obesity. Front Endocrinol (Lausanne) 11:340. https://doi.org/10.3389/fendo.2020.00340

    Article  PubMed  Google Scholar 

  31. Kim HB, Lee HS, Lee YJ (2018) Association of serum ferritin levels with non-alcoholic fatty liver disease in postmenopausal women. Climacteric 21(5):509–514. https://doi.org/10.1080/13697137.2018.1493451

    Article  CAS  PubMed  Google Scholar 

  32. Wood MJ, Crawford DHG, Wockner LF, Powell LW, Ramm GA (2017) Serum ferritin concentration predicts hepatic fibrosis better than hepatic iron concentration in human HFE-haemochromatosis. Liver Int 37(9):1382–1388. https://doi.org/10.1111/liv.13395

    Article  CAS  PubMed  Google Scholar 

  33. Centers for disease control and prevention. NHANES 2017-March 2020 pre-pandemic. https://wwwn.cdc.gov/nchs/data/nhanes/2019-2020/labmethods/FETIB-K-MET-Iron-(Frozen)-508.pdf. Accessed 27 Mar 2023

  34. Yang HH, Chen GC, Li DM, Lan L, Chen LH, Xu JY, Qin LQ (2021) Serum iron and risk of nonalcoholic fatty liver disease and advanced hepatic fibrosis in US adults. Sci Rep 11(1):10387. https://doi.org/10.1038/s41598-021-89991-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tussing-Humphreys LM, Nemeth E, Fantuzzi G, Freels S, Holterman AX, Galvani C, Ayloo S, Vitello J, Braunschweig C (2010) Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity (Silver Spring) 18(10):2010–2016. https://doi.org/10.1038/oby.2009.490

    Article  CAS  PubMed  Google Scholar 

  36. Gong L, Yuan F, Teng J, Li X, Zheng S, Lin L, Deng H, Ma G, Sun C, Li Y (2014) Weight loss, inflammatory markers, and improvements of iron status in overweight and obese children. J Pediatr 164(4):795-800 e2. https://doi.org/10.1016/j.jpeds.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  37. Ma B, Sun H, Zhu B, Wang S, Du L, Wang X, Qu S (2021) Hepatic steatosis is associated with elevated serum iron in patients with obesity and improves after laparoscopic sleeve gastrectomy. Obes Facts 14(1):64–71. https://doi.org/10.1159/000511736

    Article  CAS  PubMed  Google Scholar 

  38. Ruivard M, Laine F, Deugnier Y (2016) Iron absorption in nonalcoholic steatohepatitis and dysmetabolic iron overload syndrome. Hepatology 63(5):1737–1738. https://doi.org/10.1002/hep.28296

    Article  PubMed  Google Scholar 

  39. Utzschneider KM, Largajolli A, Bertoldo A, Marcovina S, Nelson JE, Yeh MM, Kowdley KV, Kahn SE (2014) Serum ferritin is associated with non-alcoholic fatty liver disease and decreased beta-cell function in non-diabetic men and women. J Diabetes Complications 28(2):177–184. https://doi.org/10.1016/j.jdiacomp.2013.11.007

    Article  PubMed  Google Scholar 

  40. Datz C, Felder TK, Niederseer D, Aigner E (2013) Iron homeostasis in the metabolic syndrome. Eur J Clin Invest 43(2):215–224. https://doi.org/10.1111/eci.12032

    Article  CAS  PubMed  Google Scholar 

  41. Britton LJ, Subramaniam VN, Crawford DH (2016) Iron and non-alcoholic fatty liver disease. World J Gastroenterol 22(36):8112–8122. https://doi.org/10.3748/wjg.v22.i36.8112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lynch S, Pfeiffer CM, Georgieff MK, Brittenham G, Fairweather-Tait S, Hurrell RF, Mcardle HJ, Raiten DJ (2018) Biomarkers of nutrition for development (BOND)-iron review. J Nutr 148(suppl_1):1001S-1067S. https://doi.org/10.1093/jn/nxx036

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aigner E, Feldman A, Datz C (2014) Obesity as an emerging risk factor for iron deficiency. Nutrients 6(9):3587–3600. https://doi.org/10.3390/nu6093587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hong T, Chen Y, Li X, Lu Y (2021) The role and mechanism of oxidative stress and nuclear receptors in the development of NAFLD. Oxid Med Cell Longev 2021:6889533. https://doi.org/10.1155/2021/6889533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mehta KJ, Farnaud SJ, Sharp PA (2019) Iron and liver fibrosis: mechanistic and clinical aspects. World J Gastroenterol 25(5):521–538. https://doi.org/10.3748/wjg.v25.i5.521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moen IW, Bergholdt HKM, Mandrup-Poulsen T, Nordestgaard BG, Ellervik C (2018) Increased plasma ferritin concentration and low-grade inflammation—a Mendelian randomization study. Clin Chem 64(2):374–385. https://doi.org/10.1373/clinchem.2017.276055

    Article  CAS  PubMed  Google Scholar 

  47. Orino K, Lehman L, Tsuji Y, Ayaki H, Torti SV, Torti FM (2001) Ferritin and the response to oxidative stress. Biochem J 357(Pt 1):241–247. https://doi.org/10.1042/0264-6021:3570241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all team members and participants in the NHANES study.

Funding

This research is supported by the National Natural Science Foundation of China (82170800), Guangdong Basic and Applied Basic Research Foundation (2021A1515110682), and Research Initiation Project of Shunde Hospital of Southern Medical University (SRSP2021001).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: GY, LL, YL, and CS.

Literature searches and data collection: XC, HD, HZ, and YJ.

Statistical analysis: GY, LL, and TQ.

Drafting of the manuscript: GY, LL, and TQ.

Critical revision: JS and HW.

Study supervision: JS and HW.

All authors contributed to the manuscript for important intellectual content and approved the submission.

Corresponding authors

Correspondence to Heng Wan or Jie Shen.

Ethics declarations

Ethics Approval

The original survey was approved by the NCHS Research Ethics Review Board, and informed consent for data collection and storage was obtained from all participants.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Genfeng Yu, Lan Liu, and Tao Qin contributed equally to this manuscript and shared their first authorship.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 270 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, G., Liu, L., Qin, T. et al. Associations of Serum Iron Status with MAFLD and Liver Fibrosis in the USA: a Nationwide Cross-Section Study. Biol Trace Elem Res 202, 87–98 (2024). https://doi.org/10.1007/s12011-023-03666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03666-4

Keywords

Navigation