Skip to main content

Advertisement

Log in

Heavy Metal and Trace Element Levels in Hair Samples from Fishermen in Turkey: The Fish/Ermen Heavy Metal Study (FHMS)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Toxic chemicals from polluted seas can enter the human body through seafood consumption and cause health problems. The aim of this study was to evaluate the levels of selected heavy metals and trace elements among fishermen who frequently consumed seafood and controls who consumed seafood less frequently in four provinces on the shores of the Sea of Marmara, which is heavily polluted by industrial activities. Fourteen elements (antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, selenium, strontium, vanadium, and zinc) were analyzed in hair samples using the inductively coupled plasma-mass spectrometer method. Levels of arsenic (0.147 ± 0.067 µg/g vs. 0.129 ± 0.070 µg/g, p = 0.025), chromium (0.327 ± 0.096 µg/g vs. 0.269 ± 0.116 µg/g, p < 0.01), nickel (0.469 ± 0.339 µg/g vs. 0.403 ± 0.368 µg/g, p = 0.015), strontium (1.987 ± 1.241 µg/g vs. 1.468 ± 1.190 µg/g, p < 0.01), and zinc (103.3 ± 43.1 µg/g vs. 92.7 ± 37.4 µg/g, p = 0.047) were higher in the fisherman group than in the control group. No difference was found between the groups in terms of other elements. The findings suggest that heavy metal-trace element contamination in the Sea of Marmara may increase the exposure levels of individuals to some chemicals through seafood consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Brunner EJ, Jones PJS, Friel S, Bartley M (2008) Fish, human health and marine ecosystem health: policies in collision. Int J Epidemiol 38(1):93–100. https://doi.org/10.1093/ije/dyn157

    Article  PubMed  Google Scholar 

  2. Sidhu KS (2003) Health benefits and potential risks related to consumption of fish or fish oil. Regul Toxicol Pharmacol 38(3):336–344. https://doi.org/10.1016/j.yrtph.2003.07.002

    Article  CAS  PubMed  Google Scholar 

  3. Wilhelmsson D, Thompson RC, Holmström K, Linden O, Eriksson-Hagg H (2013) Marine pollution. In: Noone K, Sumaila UR, Diaz R (eds) Managing ocean environments in a changing climate. Elsevier, Massachusetts, pp 127–169

    Chapter  Google Scholar 

  4. Yüksel B, Ustaoğlu F, Tokatli C, Islam MS (2022) Ecotoxicological risk assessment for sediments of Çavuşlu stream in Giresun, Turkey: association between garbage disposal facility and metallic accumulation. Environ Sci Pollut Res 29:17223–17240. https://doi.org/10.1007/s11356-021-17023-2

    Article  CAS  Google Scholar 

  5. Riisgård HU, Hansen S (1990) Biomagnification of mercury in a marine grazing food-chain: algal cells Phaeodactylum tricornutum, mussels Mytilus edulis and flounders Platichthys flesus studied by means of a stepwise-reduction-CVAA method. Mar Ecol Prog Ser 62:259–270. https://doi.org/10.3354/meps062259

    Article  Google Scholar 

  6. Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. In: Saleh HEM, Aglan RF (eds) Heavy metals. InTech, London, pp 115–133. https://doi.org/10.5772/intechopen.76082

  7. Asaolu S, Olaofe O (2005) Biomagnification of some heavy and essential metals in sediments, fishes and crayfish from Ondo State coastal region, Nigeria. Pak J Sci Ind Res 48:96–102

    CAS  Google Scholar 

  8. McCally M (2002) Life support: the environment and human health. MIT Press, London

    Book  Google Scholar 

  9. Eto K (2000) Minamata disease. Neuropathology 20(s1):14–19. https://doi.org/10.1046/j.1440-1789.2000.00295.x

    Article  Google Scholar 

  10. Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24. https://doi.org/10.3109/10408449509089885

    Article  CAS  PubMed  Google Scholar 

  11. ATSDR (2007) Toxicological profile for arsenic. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf. Accessed 12 May 2018

  12. ATSDR (2012) Toxicological profile for cadmium. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf. Accessed 10 May 2018

  13. Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Guha N, Freeman C, Galichet L, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group (2009) A review of human carcinogens–Part C: metals, arsenic, dusts, and fibres. Lancet Oncol 10(5):453–454. https://doi.org/10.1016/S1470-2045(09)70134-2

    Article  PubMed  Google Scholar 

  14. Bencko V (1995) Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology 101(1–2):29–39. https://doi.org/10.1016/0300-483X(95)03018-B

    Article  CAS  PubMed  Google Scholar 

  15. González-Muñoz MJ, Peña A, Meseguer I (2008) Monitoring heavy metal contents in food and hair in a sample of young Spanish subjects. Food Chem Toxicol 46(9):3048–3052. https://doi.org/10.1016/j.fct.2008.06.004

    Article  CAS  PubMed  Google Scholar 

  16. Yasar D, Aksu AE, Uslu O (2001) Anthropogenic pollution in Izmit Bay: heavy metal concentrations in surface sediments. Turkish J Eng Environ 25:299–313

    CAS  Google Scholar 

  17. Kucuksezgin F, Kontas A, Altay O, Uluturhan E, Darılmaz E (2006) Assessment of marine pollution in Izmir Bay: nutrient, heavy metal and total hydrocarbon concentrations. Environ Int 32(1):41–51. https://doi.org/10.1016/j.envint.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  18. Pekey H (2006) Heavy metal pollution assessment in sediments of the Izmit Bay. Turkey Environ Monit Assess 123(1):219–231. https://doi.org/10.1007/s10661-006-9192-y

    Article  CAS  PubMed  Google Scholar 

  19. Pekey H, Karakaş D, Ayberk S, Tolun L, Bakoǧlu M (2004) Ecological risk assessment using trace elements from surface sediments of İzmit Bay (Northeastern Marmara Sea) Turkey. Mar Pollut Bull 48(9):946–953. https://doi.org/10.1016/j.marpolbul.2003.11.023

    Article  CAS  PubMed  Google Scholar 

  20. Otansev P, Taşkın H, Başsarı A, Varinlioğlu A (2016) Distribution and environmental impacts of heavy metals and radioactivity in sediment and seawater samples of the Marmara Sea. Chemosphere 154:266–275. https://doi.org/10.1016/j.chemosphere.2016.03.122

    Article  CAS  PubMed  Google Scholar 

  21. TÜİK (2019) Fishery products. Turkish Statistical Institute. https://data.tuik.gov.tr/Bulten/Index?p=Fishery-Products-2018-30697. Accessed 24 March 2023

  22. Güngör A, Kara D (2018) Toxicities and risk assessment of heavy metals of the six most consumed fish from the Marmara Sea. Environ Sci Pollut Res Int 25(3):2672–2682. https://doi.org/10.1007/s11356-017-0672-0

    Article  CAS  PubMed  Google Scholar 

  23. Aksu A, Balkis N, Taskin O, Ersan M (2011) Toxic metal (Pb, Cd, As and Hg) and organochlorine residue levels in hake (Merluccius merluccius) from the Marmara Sea, Turkey. Environ Monit Assess 182:509–521. https://doi.org/10.1007/s10661-011-1893-1

    Article  CAS  PubMed  Google Scholar 

  24. Keskin Y, Baskaya R, Özyaral O, Yurdun T, Lüleci NE, Hayran O (2007) Cadmium, lead, mercury and copper in fish from the Marmara Sea. Turkey Bull Environ Contam Toxicol 78(3):258–261. https://doi.org/10.1007/s00128-007-9123-9

    Article  CAS  PubMed  Google Scholar 

  25. Ünlü S, Topçuoğlu S, Alpar B, Kirbaşoğlu C, Ziya Yilmaz Y (2007) Heavy metal pollution in surface sediment and mussel samples in the Gulf of Gemlik. Environ Monit Assess 144:169–178. https://doi.org/10.1007/s10661-007-9986-6

    Article  CAS  PubMed  Google Scholar 

  26. Köker L, Aydın F, Gaygusuz Ö, Akçaalan R, Çamur D, İlter H, Ayoğlu FN, Altın A, Topbaş M, Albay M (2021) Heavy metal concentrations in Trachurus mediterraneus and Merlangius merlangus captured from Marmara Sea, Turkey and associated health risks. Environ Manage 67:522–531. https://doi.org/10.1007/s00267-020-01352-y

    Article  PubMed  Google Scholar 

  27. Dökmeci AH, Sabudak T, Dalmış V (2019) Bioaccumulation of essential and toxic metals in four different species of bottom fish in the Marmara Sea, Tekirdag, Turkey: risk assessment to human health. Desalin Water Treat 148(2019):213–221. https://doi.org/10.5004/dwt.2019.23885

    Article  CAS  Google Scholar 

  28. Topal T, Onac C (2020) Determination of heavy metals and pesticides in different types of fish samples collected from four different locations of Aegean and Marmara Sea. J Food Qual 2020:1–12. https://doi.org/10.1155/2020/8101532

    Article  CAS  Google Scholar 

  29. Johnsson C, Sällsten G, Schütz A, Sjörs A, Barregård L (2004) Hair mercury levels versus freshwater fish consumption in household members of Swedish angling societies. Environ Res 96(3):257–263. https://doi.org/10.1016/j.envres.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  30. Schaefer AM, Jensen EL, Bossart GD, Reif JS (2014) Hair mercury concentrations and fish consumption patterns in Florida residents. Int J Environ Res Public Health 11(7):6709–6726. https://doi.org/10.3390/ijerph110706709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim N-S (2005) Lee B-K (2010) Blood total mercury and fish consumption in the Korean general population in KNHANES III. Sci Total Environ 408(20):4841–4847. https://doi.org/10.1016/j.scitotenv.2010.06.026

    Article  CAS  Google Scholar 

  32. Rodríguez Martín JA, De Arana C, Ramos-Miras JJ, Gil C, Boluda R (2015) Impact of 70 years urban growth associated with heavy metal pollution. Environ Pollut 196:156–163. https://doi.org/10.1016/j.envpol.2014.10.014

    Article  CAS  PubMed  Google Scholar 

  33. Vural N, Unlü H (1996) Methylmercury in hair of fishermen from Turkish Coasts. Bull Environ Contam Toxicol 57:315–320. https://doi.org/10.1007/s001289900192

    Article  CAS  PubMed  Google Scholar 

  34. Doğan-Sağlamtimur N, Kumbur H (2010) Metals (Hg, Pb, Cu, and Zn) Bioaccumulation in sediment, fish, and human scalp hair: a case study from the city of Mersin along the southern coast of Turkey. Biol Trace Elem Res 136(1):55–70. https://doi.org/10.1007/s12011-009-8516-5

    Article  CAS  PubMed  Google Scholar 

  35. Çamur D, Güler Ç, Vaizoğlu SA, Özdilek B (2016) Determining mercury levels in anchovy and in individuals with different fish consumption habits, together with their neurological effects. Toxicol Ind Health 32(7):1215–1223. https://doi.org/10.1177/0748233714555393

    Article  CAS  PubMed  Google Scholar 

  36. Çamur D, Topbaş M, İlter H, Albay M, Ayoğlu FN, Can M, Altın A, Demirtaş Y, Somuncu BP, Aydın F, Açıkgöz B (2021) Heavy metals and trace elements in whole-blood samples of the fishermen in Turkey: the Fish/ermen Heavy Metal Study (FHMS). Environ Manage 67:553–562. https://doi.org/10.1007/s00267-020-01398-y

    Article  PubMed  Google Scholar 

  37. Raposo JC, Navarro P, Sarmiento A, Arribas E, Irazola M, Alonso RM (2014) Analytical proposal for trace element determination in human hair. Application to the Biscay province population, northern Spain. Microchem J 116:125–134. https://doi.org/10.1016/j.microc.2014.04.012

    Article  CAS  Google Scholar 

  38. Rodushkin I, Axelsson MD (2000) Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part I. Analytical methodology Sci Total Environ 250:83–100. https://doi.org/10.1016/S0048-9697(00)00369-7

    Article  CAS  PubMed  Google Scholar 

  39. Rodushkin I, Axelsson MD (2000) Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part II. A study of the inhabitants of northern Sweden. Sci Total Environ 262:21–36. https://doi.org/10.1016/S0048-9697(00)00531-3

    Article  CAS  PubMed  Google Scholar 

  40. Saad A, Hassanien MA (2001) Assessment of arsenic level in the hair of the nonoccupational Egyptian population: pilot study. Environ Int 27(6):471–478. https://doi.org/10.1016/S0160-4120(01)00102-7

    Article  CAS  PubMed  Google Scholar 

  41. Meltzer HM, Maage A, Ydersbond TA, Haug E, Glattre E, Holm H (2002) Fish arsenic may influence human blood arsenic, selenium, and T4:T3 ratio. Biol Trace Elem Res 90(1):83–98. https://doi.org/10.1385/BTER:90:1-3:83

    Article  CAS  PubMed  Google Scholar 

  42. Miklavčič A, Casetta A, SnojTratnik J, Mazej D, Krsnik M, Mariuz M, Sofianou K, Spirić Z, Barbone F, Horvatet M (2013) Mercury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area. Environ Res 120:7–17. https://doi.org/10.1016/j.envres.2012.08.010

    Article  CAS  PubMed  Google Scholar 

  43. Mansilla-Rivera I, Nazario CM, Ramírez-Marrero FA, Crespo CJ, Rodríguez-Sierra CJ (2014) Assessing arsenic exposure from consumption of seafood from Vieques-Puerto Rico: a pilot biomonitoring study using different biomarkers. Arch Environ Contam Toxicol 66(2):162–175. https://doi.org/10.1007/s00244-013-9962-9

    Article  CAS  PubMed  Google Scholar 

  44. Anwar M (2005) Arsenic, cadmium and lead levels in hair and toenail samples in pakistan. Environ Sci 12(2):71–86

    CAS  PubMed  Google Scholar 

  45. Tabata H, Anwar M, Horai S, Ando T, Nakano A, Wakamiya J, Koriyama C, Nakagawa M, Yamada K, Akiba S (2006) Toenail arsenic levels among residents in Amami-Oshima Island, Japan. Environ Sci 13:149–160

    CAS  PubMed  Google Scholar 

  46. Freire C, Koifman RJ, Fujimoto D, de Oliveira Souza VC, Barbosa F, Koifman S (2015) Reference values of cadmium, arsenic and manganese in blood and factors associated with exposure levels among adult population of Rio Branco, Acre, Brazil. Chemosphere 128:70–78. https://doi.org/10.1016/j.chemosphere.2014.12.083

    Article  CAS  PubMed  Google Scholar 

  47. Meador JP, Ernest DW, Kagley A (2004) Bioaccumulation of arsenic in marine fish and invertebrates from Alaska and California. Arch Environ Contam Toxicol 47(2):223–233. https://doi.org/10.1007/s00244-004-3035-z

    Article  CAS  PubMed  Google Scholar 

  48. Yüksel B, Şen N, Türksoy VA, Tutkun E, Söylemezoğlu T (2018) Effect of exposure time and smoking habit on arsenic levels in biological samples of metal workers in comparison with controls. Marmara Pharm J 22(2):218–226. https://doi.org/10.12991/mpj.2018.59

    Article  CAS  Google Scholar 

  49. Taylor V, Goodale B, Raab A, Schwerdtle T, Reimer K, Conklin S, Karagas MR, Francesconi KA (2017) Human exposure to organic arsenic species from seafood. Sci Total Environ 580:266–282. https://doi.org/10.1016/j.scitotenv.2016.12.113

    Article  CAS  PubMed  Google Scholar 

  50. ATSDR (2012) Toxicological profile for chromium. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf. Accessed 18 May 2018

  51. Anderson RA (1997) Chromium as an essential nutrient for humans. Regul Toxicol Pharmacol 26(1):35–41. https://doi.org/10.1006/rtph.1997.1136

    Article  Google Scholar 

  52. Khlifi R, Olmedo P, Gil F, Feki-Tounsi M, Hammami B, Rebai A, Hamza-Chaffai A (2014) Biomonitoring of cadmium, chromium, nickel and arsenic in general population living near mining and active industrial areas in Southern Tunisia. Environ Monit Assess 186(2):761–779. https://doi.org/10.1007/s10661-013-3415-9

    Article  CAS  PubMed  Google Scholar 

  53. Aguilera I, Daponte A, Gil F, Hernández AF, Godoy P, Pla A, Ramos JL (2010) Urinary levels of arsenic and heavy metals in children and adolescents living in the industrialised area of Ria of Huelva (SW Spain). Environ Int 36(6):563–569. https://doi.org/10.1016/j.envint.2010.04.012

    Article  CAS  PubMed  Google Scholar 

  54. ATSDR (2005) Toxicological profile for nickel. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp15.pdf. Accessed 12 May 2018

  55. ATSDR (2004) Toxicological profile for strontium. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp159.pdf. Accessed 18 April 2018

  56. Buscemi S, Vasto S, Di Gaudio F, Grosso G, Bergante S, Galvano F, Massenti FM, Amodio E, Rosafio G, Verga S (2014) Endothelial function and serum concentration of toxic metals in frequent consumers of fish. PLoS One 9(11):e112478. https://doi.org/10.1371/journal.pone.0112478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Z, Wang B, Huo W, Liu Y, Zhu Y, Xie J, Li Z, Ren A (2017) Are concentrations of alkaline earth elements in maternal hair associated with risk of neural tube defects? Sci Total Environ 609:694–700. https://doi.org/10.1016/j.scitotenv.2017.07.160

    Article  CAS  PubMed  Google Scholar 

  58. ATSDR (2005) Toxicological profile for zinc. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp60.pdf. Accessed 16 May 2018

  59. Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365. https://doi.org/10.3390/ijerph7041342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Arvanitidou V, Voskaki I, Tripsianis G, Athanasopoulou H, Tsalkidis A, Filippidis S, Schuplis K, Androulakis I (2007) Serum copper and zinc concentrations in healthy children aged 3–14 years in greece. Biol Trace Elem Res 115(1):1–12. https://doi.org/10.1385/BTER:115:1:1

    Article  CAS  PubMed  Google Scholar 

  61. González-Reimers E, Martín-González MC, Galindo-Martín L, Durán-Castellón MC, Alemán-Valls MR, Velasco-Vázquez J, Gonzalez-Perez JM, Barroso-Guerrero F (2008) Hair zinc, copper and iron: relationships with quality of diet, tobacco smoking and nutritional status. Trace Elem Electroly 25:35–40. https://doi.org/10.5414/TEP25035

    Article  Google Scholar 

  62. Gonzalez-Reimers E, Martín-González C, Galindo-Martín L, Aleman-Valls MR, Velasco-Vázquez J, Arnay-de-la-Rosa M, Pérez-Hernández O, Hernández Luis R (2014) Lead, cadmium and zinc in hair samples: relationship with dietary habits and urban environment. Biol Trace Elem Res 157(3):205–210. https://doi.org/10.1007/s12011-014-9896-8

    Article  CAS  PubMed  Google Scholar 

  63. Voskaki I, Arvanitidou V, Athanasopoulou H, Tzagkaraki A, Tripsianis G, Giannoulia-Karantana A (2010) Serum copper and zinc levels in healthy Greek children and their parents. Biol Trace Elem Res 134(2):136–145. https://doi.org/10.1007/s12011-009-8462-2

    Article  CAS  PubMed  Google Scholar 

  64. ATSDR (1999) Toxicological profile for mercury. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf. Accessed 18 April 2018

  65. Al-Majed NB, Preston MR (2000) Factors influencing the total mercury and methyl mercury in the hair of the fishermen of Kuwait. Environ Pollut 109:239–250. https://doi.org/10.1016/S0269-7491(99)00261-4

    Article  CAS  PubMed  Google Scholar 

  66. Kaya Akyüzlü D, Kayaaltı Z, Özdemir F, Yüksel B, Söylemezoğlu T (2016) Effect of metallothionein polymorphism on blood, hair and urinary mercury levels in Turkish women. Toxicol Lett 258:s202. https://doi.org/10.1016/j.toxlet.2016.06.1736

    Article  Google Scholar 

  67. Hovinga ME, Sowers M, Humphrey HEB (1993) Environmental exposure and lifestyle predictors of lead, cadmium, PCB, and DDT levels in Great Lakes fish eaters. Arch Environ Health 48(2):98–104. https://doi.org/10.1080/00039896.1993.9938402

    Article  CAS  PubMed  Google Scholar 

  68. Moon C-S, Lee C, Hong Y, Ikeda M (2014) Higher cadmium burden in coastal areas than in inland areas in Korea: implications for seafood intake. Asia Pacific J Clin Nutr 23:219–224. https://doi.org/10.6133/apjcn.2014.23.2.10

    Article  CAS  Google Scholar 

  69. Guan S, Palermo T, Meliker J (2015) Seafood intake and blood cadmium in a cohort of adult avid seafood consumers. Int J Hyg Environ Health 218(1):147–152. https://doi.org/10.1016/j.ijheh.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  70. Ilmiawati C, Yoshida T, Itoh T, Nakagi Y, Saijo Y, Sugioka Y, Sakamoto M, Ikegami A, Ogawa M, Kuyama F (2015) Biomonitoring of mercury, cadmium, and lead exposure in Japanese children: a cross-sectional study. Environ Health Prev Med 20(1):18–27. https://doi.org/10.1007/s12199-014-0416-4

    Article  CAS  PubMed  Google Scholar 

  71. Morais S, Garcia e Costa F, Pereira M (2012) Heavy metals and human health. In: Oosthuizen J (ed) Environmental Health - Emerging issues and practice. InTech, London, pp 228. https://doi.org/10.5772/29869

  72. Takeda SHK, Kuno R, Barbosa F, Gouveia N (2017) Trace element levels in blood and associated factors in adults living in the metropolitan area of São Paulo, Brazil. J Trace Elem Med Biol 44:307–314. https://doi.org/10.1016/j.jtemb.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  73. Salameh P, Bouchy N, Geahchan A (2008) Hair lead concentration in the Lebanese population: phase 1 results. East Mediterr Health J 14:831–840

    CAS  PubMed  Google Scholar 

  74. Holben DH, Smith AM (1999) The diverse role of selenium within selenoproteins: a review. J Acad Nutr Diet 99(7):836–843. https://doi.org/10.1016/S0002-8223(99)00198-4

    Article  CAS  Google Scholar 

  75. Bost M, Houdart S, Oberli M, Kalonji E, Huneau J-F, Margaritis I (2016) Dietary copper and human health: current evidence and unresolved issues. J Trace Elem Med Biol 35:107–115. https://doi.org/10.1016/j.jtemb.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  76. Svensson BG, Nilsson A, Jonsson E, Schütz A, Åkesson B, Hagmar L (1995) Fish consumption and exposure to persistent organochlorine compounds, mercury, selenium and methylamines among Swedish fishermen. Scand J Work Environ Health 2:96–105. https://doi.org/10.1016/S1470-2045(09)70134-2

    Article  Google Scholar 

  77. González-Reimers E, Martín-González C, Galindo-Martín L, Aleman-Valls R, González-Pérez J, Jorge-Ripper C, Elvira-Cabrera O, Quintero-Platt G (2014) Hair copper in normal individuals: relationship with body mass and dietary habits. Trace Elem Electroly 31:67–72. https://doi.org/10.5414/TEX01337

    Article  CAS  Google Scholar 

  78. Fang T, Aronson KJ, Campbell L (2011) Freshwater fish-consumption relations with total hair mercury and selenium among women in Eastern China. Arch Environ Contam Toxicol 62:323–332. https://doi.org/10.1007/s00244-011-9689-4

    Article  CAS  PubMed  Google Scholar 

  79. Skalny AV, Mona W, Kao R, Skalnaya MG, Huang P-T, Wu C-C, Ajsuvakova OP, Skalnaya OA, Tinkov AA (2019) Hair trace element levels in Han and indigenous Hualien inhabitants in Taiwan. Biol Trace Elem Res 191(1):1–9. https://doi.org/10.1007/s12011-018-1581-x

    Article  CAS  PubMed  Google Scholar 

  80. Stern BR, Solioz M, Krewski D, Aggett P, Aw T-C, Baker S, Crump K, Dourson M, Haber L, Hertzberg R, Keen C, Meek B, Rudenko L, Schoeny R, Slob W, Starr T (2007) Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J Toxicol Environ Health 10(3):157–222. https://doi.org/10.1080/10937400600755911

    Article  CAS  Google Scholar 

  81. ATSDR (2003) Toxicological profile for selenium. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta, GA. https://www.atsdr.cdc.gov/toxprofiles/tp92.pdf. Accessed 16 May 2018

  82. Gebel TW, Suchenwirth RH, Bolten C, Dunkelberg HH (1998) Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure. Environ Health Perspect 106(1):33–39. https://doi.org/10.1289/ehp.9810633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yedomon B, Menudier A, Etangs FLD, Anani L, Fayomi B, Druet-Cabanac M, Moesch C (2017) Biomonitoring of 29 trace elements in whole blood from inhabitants of Cotonou (Benin) by ICP-MS. J Trace Elem Med Biol 43:38–45. https://doi.org/10.1016/j.jtemb.2016.11.004

    Article  CAS  PubMed  Google Scholar 

  84. Yan L, Wang B, Li Z, Liu Y, Huo W, Wang J, Li Z, Ren A (2017) Association of essential trace metals in maternal hair with the risk of neural tube defects in offspring. Birth Defects Res 109(3):234–243. https://doi.org/10.1002/bdra.23594

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research, part of the “Heavy Metal-Trace Element Load and Risk Mapping in Sea Products and Fishermen” project (no. 116S520), was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study design. Data collection and sampling were carried out by Yusuf Demirtaş, Murat Topbaş, Büşra Parlak Somuncu, and Fatih Aydın. Analyses were performed by Yusuf Demirtaş, Murat Topbaş, Murat Can, and Büşra Parlak Somuncu. Derya Çamur, Meriç Albay, Hüseyin İlter, Ferruh Niyazi Ayoğlu, Ahmet Altın, and Bilgehan Açıkgöz were involved in the conceptualization, methodology, and revision. Murat Topbaş carried out the project administration. The first draft of the manuscript was written by Yusuf Demirtaş, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yusuf Demirtaş.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Bülent Ecevit University Clinical Research Ethical Committee (date: 24 February 2016/No. 2016/04).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirtaş, Y., Topbaş, M., Çamur, D. et al. Heavy Metal and Trace Element Levels in Hair Samples from Fishermen in Turkey: The Fish/Ermen Heavy Metal Study (FHMS). Biol Trace Elem Res 202, 34–45 (2024). https://doi.org/10.1007/s12011-023-03653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03653-9

Keywords

Navigation