Skip to main content

Advertisement

Log in

Serum Cu, Zn and IL–1β Levels May Predict Fetal Miscarriage Risk After IVF Cycles: A Nested Case–Control Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To explore the association between serum-related indicators (levels of inflammatory cytokines and essential trace elements) and miscarriage risk among infertile women undergoing assisted reproductive techniques (ART) on the 14th day after embryo transfer, and to develop and establish a multivariable algorithm model that might predict pregnancy outcome. According to a nested case–control study design, a total of 100 miscarriage cases and 100 live birth controls were included in this study, and women in both groups were infertile and have underwent in vitro fertilization (IVF). Pregnancy tests were performed and serum levels of five essential trace elements (vanadium (V), copper (Cu), zinc (Zn), selenium (Se) and molybdenum (Mo)) and five inflammatory cytokines (interleukin–1β (IL–1β), IL–6, IL–8, IL–10 and tumor necrosis factor–α (TNF–α)) of the participants were measured on the 14th day after embryo transfer. The serum levels of five inflammatory cytokines were determined by multiple magnetic bead enzyme immunity analyzer; and the serum concentrations of five elements were determined simultaneously by inductively coupled plasma‒mass spectrometry (ICP ‒ MS). The logistic regression was used to evaluate the relationship between these serum indices and miscarriage risk among women undergoing ART, and a predictive model of pregnancy outcome based on these indices was established. The levels of IL–10, IL–1β and TNF–α of infertile women in the live birth group were significantly higher than those in the miscarriage group (p = 0.009, p < 0.001, p = 0.006), and the levels of V, Cu, Zn and Se of infertile women in the live birth group were also significantly higher than those in the miscarriage group (all p < 0.001). Through logistic regression analyses, we found that serum levels of IL–1β, TNF–α, V, Cu, Zn and Se were significantly and negatively associated with miscarriage risk. Different combination prediction models were generated according to the results of logistic regression analyses, and the combination of IL–1β, Cu and Zn had the best prediction performance. The area under the curve (AUC) was 0.776, the sensitivity of the model was 60% and the specificity was 84%. In conclusion, the serum-related indicators of women undergoing ART on the 14th day after embryo transfer, including the inflammatory cytokines such as IL–1β and TNF–α and the essential trace metal elements such as V, Cu, Zn and Se, were negatively correlated with miscarriage risk. A multivariate algorithm model to predict pregnancy outcome among women undergoing ART was established, which showed that IL–1β, Cu and Zn might synergistically predict pregnancy outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Piccinni MP (2002) T-cell cytokines in pregnancy. Am J Reprod Immunol 47(5):289–294.https://doi.org/10.1034/j.1600-0897.2002.01104.x

    Article  PubMed  Google Scholar 

  2. Schafer-Somi S (2003) Cytokines during early pregnancy of mammals: a review. Anim Reprod Sci 75(1–2):73–94.https://doi.org/10.1016/s0378-4320(02)00222-1

    Article  CAS  PubMed  Google Scholar 

  3. Seshagiri PB, Vani V, Madhulika P (2016) Cytokines and blastocyst hatching. Am J Reprod Immunol 75(3):208–217.https://doi.org/10.1111/aji.12464

    Article  CAS  PubMed  Google Scholar 

  4. Griffith OW, Chavan AR, Protopapas S, Maziarz J, Romero R, Wagner GP (2017) Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proc Natl Acad Sci USA 114(32):E6566–E6575.https://doi.org/10.1073/pnas.1701129114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Granot I, Gnainsky Y, Dekel N (2012) Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction 144(6):661–668.https://doi.org/10.1530/REP-12-0217

    Article  CAS  PubMed  Google Scholar 

  6. Mor G, Cardenas I, Abrahams V, Guller S (2011) Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 1221:80–87. https://doi.org/10.1111/j.1749-6632.2010.05938.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Sinderen M, Menkhorst E, Winship A, Cuman C, Dimitriadis E (2013) Preimplantation human blastocyst-endometrial interactions: the role of inflammatory mediators. Am J Reprod Immunol 69(5):427–440.https://doi.org/10.1111/aji.12038

    Article  CAS  PubMed  Google Scholar 

  8. Kaislasuo J, Simpson S, Petersen JF, Peng G, Aldo P, Lokkegaard E, Paidas M, Pal L, Guller S, Mor G (2020) IL-10 to TNFalpha ratios throughout early first trimester can discriminate healthy pregnancies from pregnancy losses. Am J Reprod Immunol 83(1):e13195.https://doi.org/10.1111/aji.13195

    Article  PubMed  Google Scholar 

  9. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O (2006) Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12(9):1065–1074.https://doi.org/10.1038/nm1452

    Article  CAS  PubMed  Google Scholar 

  10. Kalkunte S, Nevers T, Norris WE, Sharma S (2011) Vascular IL-10: a protective role in preeclampsia. J Reprod Immunol 88(2):165–169.https://doi.org/10.1016/j.jri.2011.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26(4–5):235–244.https://doi.org/10.1016/j.mam.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  12. Hostetler CE, Kincaid RL, Mirando MA (2003) The role of essential trace elements in embryonic and fetal development in livestock. Vet J 166(2):125–139.https://doi.org/10.1016/s1090-0233(02)00310-6

    Article  CAS  PubMed  Google Scholar 

  13. Mistry HD, Broughton PF, Redman CW, Poston L (2012) Selenium in reproductive health. Am J Obstet Gynecol 206(1):21–30.https://doi.org/10.1016/j.ajog.2011.07.034

    Article  CAS  PubMed  Google Scholar 

  14. Roychoudhury S, Nath S, Massanyi P, Stawarz R, Kacaniova M, Kolesarova A (2016) Copper-induced changes in reproductive functions: in vivo and in vitro effects. Physiol Res 65(1):11–22.https://doi.org/10.33549/physiolres.933063

    Article  CAS  PubMed  Google Scholar 

  15. Vickram S, Rohini K, Srinivasan S, Nancy VD, Archana K, Anbarasu K, Jeyanthi P, Thanigaivel S, Gulothungan G, Rajendiran N, Srikumar PS (2021) Role of zinc (Zn) in human reproduction: a journey from initial spermatogenesis to childbirth. Int J Mol Sci 22(4):2188. https://doi.org/10.3390/ijms22042188

  16. Mehri A (2020) Trace elements in human nutrition (II) - an update. Int J Prev Med 11:2.  https://doi.org/10.4103/2Fijpvm.IJPVM_48_19

  17. Prohaska JR (2014) Impact of copper deficiency in humans. Ann N Y Acad Sci 1314:1–5.https://doi.org/10.1111/nyas.12354

    Article  CAS  PubMed  Google Scholar 

  18. Franklin RB, Costello LC (2007) Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys 463(2):211–217.https://doi.org/10.1016/j.abb.2007.02.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zalewski PD, Forbes IJ, Giannakis C (1991) Physiological role for zinc in prevention of apoptosis (gene-directed death). Biochem Int 24(6):1093–1101

    CAS  PubMed  Google Scholar 

  20. Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39(3):112–120.https://doi.org/10.1016/j.tibs.2013.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590.https://doi.org/10.1126/science.179.4073.588

    Article  CAS  PubMed  Google Scholar 

  22. Jahan TN, Anwar S, Kabir T, Hosen MJ (2022) Lead and lead-arsenic combined exposure induces mortality and developmental impairments in zebrafish embryos: a study using wild-caught zebrafish from Bangladesh. Drug Chem Toxicol 45(6):2833–2842.https://doi.org/10.1080/01480545.2021.1996594

    Article  CAS  Google Scholar 

  23. Omeljaniuk WJ, Socha K, Soroczynska J, Charkiewicz AE, Laudanski T, Kulikowski M, Kobylec E, Borawska MH (2018) Cadmium and lead in women who miscarried. Clin Lab 64(1):59–67.https://doi.org/10.7754/Clin.Lab.2017.170611

    Article  CAS  PubMed  Google Scholar 

  24. Yıldırım E, Derici MK, Demir E, Apaydın H, Koçak Ö, Kan Ö, Görkem Ü (2019) Is the concentration of cadmium, lead, mercury, and selenium related to preterm birth? Biol Trace Elem Res 191(2):306–312.https://doi.org/10.1007/s12011-018-1625-2

    Article  CAS  PubMed  Google Scholar 

  25. Sami AS, Suat E, Alkis I, Karakus Y, Guler S (2021) The role of trace element, mineral, vitamin and total antioxidant status in women with habitual abortion. J Matern Fetal Neonatal Med 34(7):1055–1062.https://doi.org/10.1080/14767058.2019.1623872

    Article  CAS  PubMed  Google Scholar 

  26. Gomez-Lopez N, Guilbert LJ, Olson DM (2010) Invasion of the leukocytes into the fetal-maternal interface during pregnancy. J Leukoc Biol 88(4):625–633.https://doi.org/10.1189/jlb.1209796

    Article  CAS  PubMed  Google Scholar 

  27. Pantos K, Grigoriadis S, Maziotis E, Pistola K, Xystra P, Pantou A, Kokkali G, Pappas A, Lambropoulou M, Sfakianoudis K, Simopoulou M (2022) The role of interleukins in recurrent implantation failure: a comprehensive review of the literature. Int J Mol Sci 23(4):2198. https://doi.org/10.3390/ijms23042198

  28. Prabhudas M, Bonney E, Caron K, Dey S, Erlebacher A, Fazleabas A, Fisher S, Golos T, Matzuk M, Mccune JM, Mor G, Schulz L, Soares M, Spencer T, Strominger J, Way SS, Yoshinaga K (2015) Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat Immunol 16(4):328–334.https://doi.org/10.1038/ni.3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. von Rango U (2008) Fetal tolerance in human pregnancy–a crucial balance between acceptance and limitation of trophoblast invasion. Immunol Lett 115(1):21–32.https://doi.org/10.1016/j.imlet.2007.09.014

    Article  CAS  Google Scholar 

  30. Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, Sullivan E (2009) van der Poel S (2009) The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology. Hum Reprod 24(11):2683–2687.https://doi.org/10.1093/humrep/dep343

    Article  CAS  PubMed  Google Scholar 

  31. Gu P, Yang X, Zhao X, Xu D (2021) The value of transvaginal 4-dimensional hysterosalpingo-contrast sonography in predicting the necessity of assisted reproductive technology for women with tubal factor infertility. Quant Imaging Med Surg 11(8):3698–3714.https://doi.org/10.21037/qims-20-1193

    Article  PubMed  PubMed Central  Google Scholar 

  32. Luke B (2017) Pregnancy and birth outcomes in couples with infertility with and without assisted reproductive technology: with an emphasis on US population-based studies. Am J Obstet Gynecol 217(3):270–281.https://doi.org/10.1016/j.ajog.2017.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bitler MP, Schmidt L (2012) Utilization of infertility treatments: the effects of insurance mandates. Demography 49(1):125–149.https://doi.org/10.1007/s13524-011-0078-4

    Article  PubMed  Google Scholar 

  34. Okun N, Sierra S (2014) Pregnancy outcomes after assisted human reproduction. J Obstet Gynaecol Can 36(1):64–83.https://doi.org/10.1016/S1701-2163(15)30685-X

    Article  PubMed  Google Scholar 

  35. Sunderam S, Kissin DM, Crawford SB, Folger SG, Boulet SL, Warner L (2015) Barfield WD (2018) Assisted reproductive technology surveillance - United States. MMWR Surveill Summ 67(3):1–28.https://doi.org/10.15585/mmwr.ss6703a1

    Article  Google Scholar 

  36. Sunderam S, Kissin DM, Crawford SB, Folger SG, Jamieson DJ, Warner L (2014) Barfield WD (2017) Assisted reproductive technology surveillance - United States. MMWR Surveill Summ 66(6):1–24.https://doi.org/10.15585/mmwr.ss6606a1

    Article  Google Scholar 

  37. Sunderam S, Kissin DM, Zhang Y, Folger SG, Boulet SL, Warner L, Callaghan WM (2016) Barfield WD (2019) Assisted reproductive technology surveillance - United States. MMWR Surveill Summ 68(4):1–23.https://doi.org/10.15585/mmwr.ss6804a1

    Article  Google Scholar 

  38. Sunderam S, Kissin DM, Zhang Y, Jewett A, Boulet SL, Warner L, Kroelinger CD (2017) Barfield WD (2020) Assisted reproductive technology surveillance - United States. MMWR Surveill Summ 69(9):1–20.https://doi.org/10.15585/mmwr.ss6909a1

    Article  Google Scholar 

  39. Sunderam S, Kissin DM, Zhang Y, Jewett A, Boulet SL, Warner L, Kroelinger CD (2018) Barfield WD (2022) Assisted reproductive technology surveillance - United States. MMWR Surveill Summ 71(4):1–19.https://doi.org/10.15585/mmwr.ss7104a1

    Article  Google Scholar 

  40. Li D, Liang C, Cao Y, Zhu D, Shen L, Zhang Z, Jiang T, Zhang Z, Zong K, Liu Y, Liang D, Cao Y, Ji D, Xu X (2022) The associations of serum metals concentrations with the intermediate and pregnancy outcomes in women undergoing in vitro fertilization (IVF). Ecotoxicol Environ Saf 233:113309.https://doi.org/10.1016/j.ecoenv.2022.113309

    Article  CAS  PubMed  Google Scholar 

  41. Jiang T, Hu Y, He S, Jiang R, Yao Y, Jin Z, Shen J, Tao F, Ji Y, Liang C (2022) Exposure to multiple toxic metals and the risk of early embryonic arrest among women undergoing assisted reproductive techniques. Environ Res 211:113072. https://doi.org/10.1016/j.envres.2022.113072

  42. Alijotas-Reig J, Esteve-Valverde E, Ferrer-Oliveras R, Llurba E, Gris JM (2017) Tumor necrosis factor-alpha and pregnancy: focus on biologics. An updated and comprehensive review. Clin Rev Allergy Immunol 53(1):40–53.https://doi.org/10.1007/s12016-016-8596-x

    Article  CAS  PubMed  Google Scholar 

  43. Robertson SA, Care AS, Moldenhauer LM (2018) Regulatory T cells in embryo implantation and the immune response to pregnancy. J Clin Invest 128(10):4224–4235.https://doi.org/10.1172/JCI122182

    Article  PubMed  PubMed Central  Google Scholar 

  44. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411.https://doi.org/10.1038/nri3452

    Article  CAS  PubMed  Google Scholar 

  45. Palomo J, Dietrich D, Martin P, Palmer G, Gabay C (2015) The interleukin (IL)-1 cytokine family–balance between agonists and antagonists in inflammatory diseases. Cytokine 76(1):25–37.https://doi.org/10.1016/j.cyto.2015.06.017

    Article  CAS  PubMed  Google Scholar 

  46. van de Veerdonk FL, Netea MG (2013) New insights in the immunobiology of IL-1 family members. Front Immunol 4:167.https://doi.org/10.3389/fimmu.2013.00167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kruessel JS, Huang HY, Wen Y, Kloodt AR, Bielfeld P, Polan ML (1997) Different pattern of interleukin-1 beta-(IL-1 beta), interleukin-1 receptor antagonist- (IL-1ra) and interleukin-1 receptor type I- (IL-1R tI) mRNA-expression in single preimplantation mouse embryos at various developmental stages. J Reprod Immunol 34(2):103–120.https://doi.org/10.1016/s0165-0378(97)00030-2

    Article  CAS  PubMed  Google Scholar 

  48. Simón C, Frances A, Piquette GN, El DI, Zurawski G, Dang W, Polan ML (1994) Embryonic implantation in mice is blocked by interleukin-1 receptor antagonist. Endocrinology 134(2):521–528.https://doi.org/10.1210/endo.134.2.8299552

    Article  PubMed  Google Scholar 

  49. Spandorfer SD, Neuer A, Liu HC, Rosenwaks Z, Witkin SS (2003) Involvement of interleukin-1 and the interleukin-1 receptor antagonist in in vitro embryo development among women undergoing in vitro fertilization-embryo transfer. J Assist Reprod Genet 20(12):502–505.https://doi.org/10.1023/b:jarg.0000013650.76052.ae

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bonetti TC, Salomao R, Brunialti M, Braga DP, Borges EJ, Silva ID (2010) Cytokine and hormonal profile in serum samples of patients undergoing controlled ovarian stimulation: interleukin-1beta predicts ongoing pregnancy. Hum Reprod 25(8):2101–2106.https://doi.org/10.1093/humrep/deq171

    Article  CAS  PubMed  Google Scholar 

  51. Kreines FM, Nasioudis D, Minis E, Irani M, Witkin SS, Spandorfer S (2018) IL-1beta predicts IVF outcome: a prospective study. J Assist Reprod Genet 35(11):2031–2035.https://doi.org/10.1007/s10815-018-1296-0

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chatterjee P, Chiasson VL, Bounds KR, Mitchell BM (2014) Regulation of the anti-inflammatory cytokines interleukin-4 and interleukin-10 during pregnancy. Front Immunol 5:253.https://doi.org/10.3389/fimmu.2014.00253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Revelli A, Delle PL, Casano S, Molinari E, Massobrio M, Rinaudo P (2009) Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol 7:40.https://doi.org/10.1186/1477-7827-7-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cerkiene Z, Eidukaite A, Usoniene A (2008) Follicular fluid levels of interleukin-10 and interferon-gamma do not predict outcome of assisted reproductive technologies. Am J Reprod Immunol 59(2):118–126.https://doi.org/10.1111/j.1600-0897.2007.00552.x

    Article  CAS  PubMed  Google Scholar 

  55. Chaouat G, Dubanchet S, Ledee N (2007) Cytokines: important for implantation? J Assist Reprod Genet 24(11):491–505.https://doi.org/10.1007/s10815-007-9142-9

    Article  PubMed  PubMed Central  Google Scholar 

  56. Alhilali M, Parham A, Attaranzadeh A, Amirian M, Azizzadeh M (2019) IL-5 in follicular fluid as a negative predictor of the intracytoplasmic sperm injection outcome. Cytokine 113:265–271.https://doi.org/10.1016/j.cyto.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  57. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118.https://doi.org/10.1152/physrev.1993.73.1.79

    Article  CAS  PubMed  Google Scholar 

  58. Bernhardt ML, Kong BY, Kim AM, O’Halloran TV, Woodruff TK (2012) A zinc-dependent mechanism regulates meiotic progression in mammalian oocytes. Biol Reprod 86(4):114.https://doi.org/10.1095/biolreprod.111.097253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jeon Y, Yoon JD, Cai L, Hwang SU, Kim E, Zheng Z, Lee E, Kim DY, Hyun SH (2014) Supplementation of zinc on oocyte in vitro maturation improves preimplatation embryonic development in pigs. Theriogenology 82(6):866–874.https://doi.org/10.1016/j.theriogenology.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  60. Kumar S, Mishra V, Thaker R, Gor M, Perumal S, Joshi P, Sheth H, Shaikh I, Gautam AK, Verma Y (2018) Role of environmental factors & oxidative stress with respect to in vitro fertilization outcome. Indian J Med Res 148(Suppl):S125–S133.https://doi.org/10.4103/ijmr.IJMR_1864_17

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hawk SN, Uriu-Hare JY, Daston GP, Jankowski MA, Kwik-Uribe C, Rucker RB, Keen CL (1998) Rat embryos cultured under copper-deficient conditions develop abnormally and are characterized by an impaired oxidant defense system. Teratology 57(6):310–320.https://doi.org/10.1002/(SICI)1096-9926(199806)57:6%3c310::AID-TERA4%3e3.0.CO;2-#

    Article  CAS  PubMed  Google Scholar 

  62. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10:49.https://doi.org/10.1186/1477-7827-10-49

    Article  PubMed  PubMed Central  Google Scholar 

  63. Skalnaya MG, Tinkov AA, Lobanova YN, Chang JS, Skalny AV (2019) Serum levels of copper, iron, and manganese in women with pregnancy, miscarriage, and primary infertility. J Trace Elem Med Biol 56:124–130.https://doi.org/10.1016/j.jtemb.2019.08.009

    Article  CAS  PubMed  Google Scholar 

  64. Tulic L, Vidakovic S, Tulic I, Curcic M, Bulat Z (2019) Toxic metal and trace element concentrations in blood and outcome of in vitro fertilization in women. Biol Trace Elem Res 188(2):284–294.https://doi.org/10.1007/s12011-018-1421-z

    Article  CAS  PubMed  Google Scholar 

  65. Bernhardt ML, Kim AM, O’Halloran TV, Woodruff TK (2011) Zinc requirement during meiosis I-meiosis II transition in mouse oocytes is independent of the MOS-MAPK pathway. Biol Reprod 84(3):526–536.https://doi.org/10.1095/biolreprod.110.086488

    Article  CAS  PubMed  Google Scholar 

  66. Kim AM, Vogt S, O’Halloran TV, Woodruff TK (2010) Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol 6(9):674–681.https://doi.org/10.1038/nchembio.419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tian X, Diaz FJ (2012) Zinc depletion causes multiple defects in ovarian function during the periovulatory period in mice. Endocrinology 153(2):873–886.https://doi.org/10.1210/en.2011-1599

    Article  CAS  PubMed  Google Scholar 

  68. Feijo G, Jantsch J, Correia LL, Eller S, Furtado-Filho OV, Giovenardi M, Porawski M, Braganhol E, Guedes RP (2022) Neuroinflammatory responses following zinc or branched-chain amino acids supplementation in obese rats. Metab Brain Dis 37(6):1875–1886.https://doi.org/10.1007/s11011-022-00996-5

    Article  CAS  PubMed  Google Scholar 

  69. Ju C, Hwang S, Cho GS, Kondaji G, Song S, Prather PL, Choi Y, Kim WK (2013) Differential anti-ischemic efficacy and therapeutic time window of trans- and cis-hinokiresinols: stereo-specific antioxidant and anti-inflammatory activities. Neuropharmacology 67:465–475.https://doi.org/10.1016/j.neuropharm.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  70. Alrashed M, Tabassum H, Almuhareb N, Almutlaq N, Alamro W, Alanazi ST, Alenazi FK, Alahmed LB, Al AM, Alenzi ND (2021) Assessment of DNA damage in relation to heavy metal induced oxidative stress in females with recurrent pregnancy loss (RPL). Saudi J Biol Sci 28(9):5403–5407.https://doi.org/10.1016/j.sjbs.2021.05.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tabassum H, Alrashed M, Malik A, Alanazi ST, Alenzi ND, Ali MN, Aljaser FS, Altoum GH, Hijazy SM, Alfadhli RA, Alrashoudi R, Akhtar S (2022) A unique investigation of thallium, tellurium, osmium, and other heavy metals in recurrent pregnancy loss: a novel approach. Int J Gynaecol Obstet.https://doi.org/10.1002/ijgo.14390

    Article  PubMed  Google Scholar 

  72. Yildirim E, Derici MK, Demir E, Apaydin H, Kocak O, Kan O, Gorkem U (2019) Is the concentration of cadmium, lead, mercury, and selenium related to preterm birth? Biol Trace Elem Res 191(2):306–312.https://doi.org/10.1007/s12011-018-1625-2

    Article  CAS  PubMed  Google Scholar 

  73. Zachara BA (2018) Selenium in complicated pregnancy. A review Adv Clin Chem 86:157–178.https://doi.org/10.1016/bs.acc.2018.05.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the medical staff in the First Afflicted Hospital of Anhui Medical University in Anhui, China for their work in recruiting subjects and collecting specimens. The authors are grateful to the Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University for the technical support in our experiment.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC–82173532, NSFC–U20A20350, NSFC–81971455, NSFC–81871216 and NSFC–81601345), the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province (gxyq2021173), the Postdoctoral Research Foundation of China (2021M700181), the University Natural Science Research Project of Anhui Province (KJ2020A0203), the National Key Research and Development Program (2018YFC1004201, 2016YFC1000204).

Author information

Authors and Affiliations

Authors

Contributions

Yunxia Cao, Dongmei Ji, Yanli Ji, and Chunmei Liang figured out the conception of this study; Yuan Hu, Dongyang Zhang, Shitao He, and Tingting Jiang tested the blood samples; Mengzhu Li, Xinyu Yue, and Guiying Luo collected the blood samples; Yuan Hu, Dongyang Zhang, Qing Zhang, and Tao Yin analyzed the data and wrote the manuscript; Fangbiao Tao, Chunmei Liang, Yanli Ji, Yunxia Cao, Guiying Luo, and Dongmei Ji offered proposals and provided financial support. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yunxia Cao, Dongmei Ji, Yanli Ji or Chunmei Liang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46.7 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhang, D., Zhang, Q. et al. Serum Cu, Zn and IL–1β Levels May Predict Fetal Miscarriage Risk After IVF Cycles: A Nested Case–Control Study. Biol Trace Elem Res 201, 5561–5574 (2023). https://doi.org/10.1007/s12011-023-03621-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03621-3

Keywords

Navigation