Skip to main content
Log in

IL-9-Producing Th9 Cells Participate in the Occurrence and Development of Iodine-Induced Autoimmune Thyroiditis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Iodine excess may cause and aggravate autoimmune thyroiditis (AIT), which is regarded as a typical kind of autoimmune disease mainly mediated by CD4+ T cells. Thus far, it is unclear whether T helper (Th) 9 cells, a novel subpopulation of CD4+ T cells, play a potential role in AIT. Therefore, in the present study, changes in Th9 cells were detected in murine models of AIT induced by excess iodine intake to explore the possible immune mechanism. Female C57BL/6 mice were divided into 7 groups (n = 8) and were supplied with water containing 0.005% sodium iodide for 0, 2, 4, 6, 8, 10, and 12 weeks. With the extension of the high-iodine intake duration, the incidence of thyroiditis and the spleen index were significantly increased, and serum thyroglobulin antibody (TgAb) titers and interleukin 9 (IL-9, major cytokine from Th9 cells) concentrations were also increased. Additionally, it was revealed that the percentages of Th9 cells in spleen mononuclear cells (SMCs) and thyroid tissues were both markedly elevated and accompanied by increased mRNA and protein expression of IL-9 and key transcription factors of Th9 cells (PU.1 and IRF-4). Significantly, dynamic changes in Th9 cells were found, with a peak at 8 weeks after high iodine intake, the time point when thyroiditis was the most serious. Importantly, Th9 cells were detected in the areas of infiltrating lymphocytes in thyroid sections. In conclusion, the continuously increasing proportions of Th9 cells may play an important role in the occurrence and development of AIT induced by high iodine intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Caturegli P, De Remigis A, Rose NR (2014) Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev 13(4–5):391–397. https://doi.org/10.1016/j.autrev.2014.01.007

    Article  CAS  PubMed  Google Scholar 

  2. Zaletel K, Gaberscek S (2011) Hashimoto’s thyroiditis: from genes to the disease. Curr Genomics 12(8):576–588. https://doi.org/10.2174/138920211798120763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hu S, Rayman MP (2017) Multiple nutritional factors and the risk of Hashimoto’s thyroiditis. Thyroid 27(5):597–610. https://doi.org/10.1089/thy.2016.0635

    Article  CAS  PubMed  Google Scholar 

  4. Katagiri R, Yuan X, Kobayashi S, Sasaki S (2017) Effect of excess iodine intake on thyroid diseases in different populations: a systematic review and meta-analyses including observational studies. Plos One 12(3):e173722. https://doi.org/10.1371/journal.pone.0173722

    Article  CAS  Google Scholar 

  5. Farebrother J, Zimmermann MB, Andersson M (2019) Excess iodine intake: sources, assessment, and effects on thyroid function. Ann N Y Acad Sci 1446(1):44–65. https://doi.org/10.1111/nyas.14041

    Article  CAS  PubMed  Google Scholar 

  6. Leung AM, Braverman LE (2014) Consequences of excess iodine. Nat Rev Endocrinol 10(3):136–142. https://doi.org/10.1038/nrendo.2013.251

    Article  CAS  PubMed  Google Scholar 

  7. Zhao H, Tian Y, Liu Z, Li X, Feng M, Huang T (2014) Correlation between iodine intake and thyroid disorders: a cross-sectional study from the south of China. Biol Trace Elem Res 162(1–3):87–94. https://doi.org/10.1007/s12011-014-0102-9

    Article  CAS  PubMed  Google Scholar 

  8. Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2(12):933–944. https://doi.org/10.1038/nri954

    Article  CAS  PubMed  Google Scholar 

  9. Perumal NB, Kaplan MH (2011) Regulating Il9 transcription in T helper cells. Trends Immunol 32(4):146–150. https://doi.org/10.1016/j.it.2011.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerlach K, Hwang Y, Nikolaev A, Atreya R, Dornhoff H, Steiner S, Lehr HA, Wirtz S, Vieth M, Waisman A, Rosenbauer F, Mckenzie AN, Weigmann B, Neurath MF (2014) TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat Immunol 15(7):676–686. https://doi.org/10.1038/ni.2920

    Article  CAS  PubMed  Google Scholar 

  11. Nalleweg N, Chiriac MT, Podstawa E, Lehmann C, Rau TT, Atreya R, Krauss E, Hundorfean G, Fichtner-Feigl S, Hartmann A, Becker C, Mudter J (2015) IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 64(5):743–755. https://doi.org/10.1136/gutjnl-2013-305947

    Article  CAS  PubMed  Google Scholar 

  12. Ouyang H, Shi Y, Liu Z, Feng S, Li L, Su N, Lu Y, Kong S (2013) Increased interleukin9 and CD4+IL-9+ T cells in patients with systemic lupus erythematosus. Mol Med Rep 7(3):1031–1037. https://doi.org/10.3892/mmr.2013.1258

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Li Q, Yang X, Li M (2015) Interleukin-9 is associated with elevated anti-double-stranded DNA antibodies in lupus-prone mice. Mol Med 21:364–370. https://doi.org/10.2119/molmed.2014.00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ciccia F, Guggino G, Rizzo A, Manzo A, Vitolo B, La Manna MP, Giardina G, Sireci G, Dieli F, Montecucco CM, Alessandro R, Triolo G (2015) Potential involvement of IL-9 and Th9 cells in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 54(12):2264–2272. https://doi.org/10.1093/rheumatology/kev252

    Article  CAS  PubMed  Google Scholar 

  15. Vyas SP, Srivastava RN, Goswami R (2021) Calcitriol attenuates TLR2/IL-33 signaling pathway to repress Th9 cell differentiation and potentially limits the pathophysiology of rheumatoid arthritis. Mol Cell Biochem 476(1):369–384. https://doi.org/10.1007/s11010-020-03914-4

    Article  CAS  PubMed  Google Scholar 

  16. Schlapbach C, Gehad A, Yang C, Watanabe R, Guenova E, Teague JE, Campbell L, Yawalkar N, Kupper TS, Clark RA (2014) Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med 6(219):218r–219r. https://doi.org/10.1126/scitranslmed.3007828

    Article  CAS  Google Scholar 

  17. Singh TP, Schon MP, Wallbrecht K, Gruber-Wackernagel A, Wang XJ, Wolf P (2013) Involvement of IL-9 in Th17-associated inflammation and angiogenesis of psoriasis. Plos One 8(1):e51752. https://doi.org/10.1371/journal.pone.0051752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zivancevic-Simonovic S, Mihaljevic O, Majstorovic I, Popovic S, Markovic S, Milosevic-Djordjevic O, Jovanovic Z, Mijatovic-Teodorovic L, Mihajlovic D, Colic M (2015) Cytokine production in patients with papillary thyroid cancer and associated autoimmune Hashimoto thyroiditis. Cancer Immunol Immunother 64(8):1011–1019. https://doi.org/10.1007/s00262-015-1705-5

    Article  CAS  PubMed  Google Scholar 

  19. Xue H, Wang W, Shan Z, Li Y, Li Y, Teng X, Gao Y, Fan C, Teng W (2011) Dynamic changes of CD4+CD25 + regulatory T cells in NOD.H-2h4 mice with iodine-induced autoimmune thyroiditis. Biol Trace Elem Res 143(1):292–301. https://doi.org/10.1007/s12011-010-8815-x

    Article  CAS  PubMed  Google Scholar 

  20. Allen EM, Appel MC, Braverman LE (1986) The effect of iodide ingestion on the development of spontaneous lymphocytic thyroiditis in the diabetes-prone BB/W rat. Endocrinology 118(5):1977–1981. https://doi.org/10.1210/endo-118-5-1977

    Article  CAS  PubMed  Google Scholar 

  21. Fischer PW, Campbell JS, Giroux A (1989) Effect of dietary iodine on autoimmune thyroiditis in the BB Wistar rats. J Nutr 119(3):502–507. https://doi.org/10.1093/jn/119.3.502

    Article  CAS  PubMed  Google Scholar 

  22. Bagchi N, Brown TR, Sundick RS (1995) Thyroid cell injury is an initial event in the induction of autoimmune thyroiditis by iodine in obese strain chickens. Endocrinology 136(11):5054–5060. https://doi.org/10.1210/endo.136.11.758824

    Article  CAS  PubMed  Google Scholar 

  23. Rasooly L, Burek CL, Rose NR (1996) Iodine-induced autoimmune thyroiditis in NOD-H-2h4 mice. Clin Immunol Immunopathol 81(3):287–292. https://doi.org/10.1006/clin.1996.0191

    Article  CAS  PubMed  Google Scholar 

  24. Teng X, Shan Z, Teng W, Fan C, Wang H, Guo R (2009) Experimental study on the effects of chronic iodine excess on thyroid function, structure, and autoimmunity in autoimmune-prone NOD.H-2h4 mice. Clin Exp Med 9(1):51–59. https://doi.org/10.1007/s10238-008-0014-0

    Article  CAS  PubMed  Google Scholar 

  25. Kasagi K, Kousaka T, Higuchi K, Iida Y, Misaki T, Alam MS, Miyamoto S, Yamabe H, Konishi J (1996) Clinical significance of measurements of antithyroid antibodies in the diagnosis of Hashimoto’s thyroiditis: comparison with histological findings. Thyroid 6(5):445–450. https://doi.org/10.1089/thy.1996.6.445

    Article  CAS  Google Scholar 

  26. Jiang HY, Li HS, Carayanniotis K, Carayanniotis G (2007) Variable influences of iodine on the T-cell recognition of a single thyroglobulin epitope. Immunology 121(3):370–376. https://doi.org/10.1111/j.1365-2567.2007.02584.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE (2018) Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 14(5):301–316. https://doi.org/10.1038/nrendo.2018.18

    Article  PubMed  Google Scholar 

  28. Latrofa F, Fiore E, Rago T, Antonangeli L, Montanelli L, Ricci D, Provenzale MA, Scutari M, Frigeri M, Tonacchera M, Vitti P (2013) Iodine contributes to thyroid autoimmunity in humans by unmasking a cryptic epitope on thyroglobulin. J Clin Endocrinol Metab 98(11):E1768–E1774. https://doi.org/10.1210/jc.2013-2912

    Article  CAS  PubMed  Google Scholar 

  29. Chen CR, Hamidi S, Braley-Mullen H, Nagayama Y, Bresee C, Aliesky HA, Rapoport B, Mclachlan SM (2010) Antibodies to thyroid peroxidase arise spontaneously with age in NOD.H-2h4 mice and appear after thyroglobulin antibodies. Endocrinology 151(9):4583–4593. https://doi.org/10.1210/en.2010-0321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang X, Gao T, Shi R, Zhou X, Qu J, Xu J, Shan Z, Teng W (2014) Effect of iodine excess on Th1, Th2, Th17, and Treg cell subpopulations in the thyroid of NOD.H-2h4 mice. Biol Trace Elem Res 159(1–3):288–296. https://doi.org/10.1007/s12011-014-9958-y

    Article  CAS  PubMed  Google Scholar 

  31. Duntas LH (2015) The role of iodine and selenium in autoimmune thyroiditis. HormMetab Res 47(10):721–726. https://doi.org/10.1055/s-0035-1559631

    Article  CAS  Google Scholar 

  32. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and together with TGF-beta, generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9(12):1347–1355. https://doi.org/10.1038/ni.1677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9(12):1341–1346. https://doi.org/10.1038/ni.165

    Article  CAS  PubMed  Google Scholar 

  34. Jabeen R, Kaplan MH (2012) The symphony of the ninth: the development and function of Th9 cells. CurrOpin Immunol 24(3):303–307. https://doi.org/10.1016/j.coi.2012.02.001

    Article  CAS  Google Scholar 

  35. Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, Mckinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11(6):527–534. https://doi.org/10.1038/ni.1867

    Article  CAS  PubMed Central  Google Scholar 

  36. Pesu M, Aittomaki S, Valineva T, Silvennoinen O (2003) PU.1 is required for transcriptional activation of the Stat6 response element in the Igepsilon promoter. Eur J Immunol 33(6):1727–1735. https://doi.org/10.1002/eji.200323680

    Article  CAS  PubMed  Google Scholar 

  37. Tamiya T, Ichiyama K, Kotani H, Fukaya T, Sekiya T, Shichita T, Honma K, Yui K, Matsuyama T, Nakao T, Fukuyama S, Inoue H, Nomura M, Yoshimura A (2013) Smad2/3 and IRF4 play a cooperative role in IL-9-producing T cell induction. J Immunol 191(5):2360–2371. https://doi.org/10.4049/jimmunol.1301276

    Article  CAS  PubMed  Google Scholar 

  38. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33(2):192–202. https://doi.org/10.1016/j.immuni.2010.07.014

    Article  CAS  PubMed  Google Scholar 

  39. Pan HF, Leng RX, Li XP, Zheng SG, Ye DQ (2013) Targeting T-helper 9 cells and interleukin-9 in autoimmune diseases. Cytokine Growth Factor Rev 24(6):515–522. https://doi.org/10.1016/j.cytogfr.2013.09.001

    Article  CAS  PubMed  Google Scholar 

  40. Elyaman W, Bradshaw EM, Uyttenhove C, Dardalhon V, Awasthi A, Imitola J, Bettelli E, Oukka M, van Snick J, Renauld JC, Kuchroo VK, Khoury SJ (2009) IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc Natl Acad Sci USA 106(31):12885–12890. https://doi.org/10.1073/pnas.0812530106

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nowak EC, Noelle RJ (2010) Interleukin-9 as a T helper type 17 cytokine. Immunology 131(2):169–173. https://doi.org/10.1111/j.1365-2567.2010.03332.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stephens GL, Swerdlow B, Benjamin E, Coyle AJ, Humbles A, Kolbeck R, Fung M (2011) IL-9 is a Th17-derived cytokine that limits pathogenic activity in organ-specific autoimmune disease. Eur J Immunol 41(4):952–962. https://doi.org/10.1002/eji.201040879

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of Shandong Province (no. ZR2013HM049, ZR2022MH175), Medical Science and Technology Development Project of Shandong Province (no. 2015WS0485), Reserve Leading Talents Project of Binzhou Medical University Hospital (no. JC2019-03), Scientific Research and Innovation Team Project of Binzhou Medical University Hospital (no. 202031), and Innovation Program of Post-graduate Education of Shandong Province (no. 20038612).

Author information

Authors and Affiliations

Authors

Contributions

Yiwen Li was responsible for carrying out the experiments, analyzing the data, and writing the manuscript. Hao Liu and Chengyan He were responsible for carrying out the experiments. Yawen Lin participated in carrying out the experiments and data analysis. Lei Ma and Haibo Xue were responsible for the design of the study and reviewed and edited this article. All authors commented on previous versions of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Haibo Xue.

Ethics declarations

Ethics Approval

The present study was approved (approval no. 20210808–54) by the Laboratory Animal Ethics Committee of Binzhou Medical University Hospital (Binzhou, China). All procedures performed in the present study involving animals were in accordance with the ethical standards of the institution.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, H., He, C. et al. IL-9-Producing Th9 Cells Participate in the Occurrence and Development of Iodine-Induced Autoimmune Thyroiditis. Biol Trace Elem Res 201, 5298–5308 (2023). https://doi.org/10.1007/s12011-023-03598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03598-z

Keywords

Navigation