Skip to main content
Log in

Accumulation Capacity of Nickel and Zinc in Yerba Mate Cultivated in Soils with Contrasting Parent Materials

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Yerba mate (Ilex paraguariensis St. Hill.) has shown a relatively high capacity for micronutrient absorption and could be a candidate for biofortification and combating a lack of micronutrients. To further evaluate the accumulation capacity of Ni and Zn, yerba mate clonal seedlings were grown in containers under five rates of Ni or Zn (0, 0.5, 2, 10, and 40 mg kg−1) with three soils originating from different parent material (basalt, rhyodacite, and sandstone). After 10 months, plants were harvested, divided into component parts (leaves, branches, and roots), and evaluated for 12 elements. The use of Zn and Ni enhanced seedling growth under rhyodacite- and sandstone-derived soils at the first application rate. Application of Zn and Ni resulted in linear increases based on Mehlich I extractions; recovery of Ni was smaller than Zn. Root Ni concentration increased from approximately 20 to 1000 mg kg−1 in rhyodacite-derived soil and from 20 to 400 mg kg−1 in basalt- and sandstone-derived soils; respective increases in leaf tissue were ~ 3 to 15 mg kg−1 and 3 to 10 mg kg−1. For Zn, the maximum obtained values were close to 2000, 1000, and 800 mg kg−1 for roots, leaves, and branches for rhyodacite-derived soils, respectively. Corresponding values for basalt- and sandstone-derived soils were 500, 400, and 300 mg kg−1, respectively. Although yerba mate is not a hyperaccumulator, this species has a relatively high capacity to accumulate Ni and Zn in young tissue with the highest accumulation occurring in roots. Yerba mate showed high potential to be used in biofortification programs for Zn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. IBGE - Instituto Brasileiro de Geografia e Estatística. Dados PAM e PEVS. Available in: https://sidra.ibge.gov.br/home/pms/brasil. Accessed 20 July 2022

  2. Ministério da Indústria, Comércio Exterior e Serviços. Available in: http://www.mdic.gov.br/index.php/comercioexterior. Accessed 10 July 2022

  3. Mendoza, J (2020) Annual per capita consumption of yerba mate in selected countries in Latin America as of July 2018. Available in: https://www.statista.com/statistics/884925/consumption-yerba-mateper-capita-latin-america/#statisticContainer. Accessed 27 Sept 2022

  4. DERAL- Departamento de economia Rural (Secretaria da Agricultura). Prognóstico Erva-mate. Available in: https://www.agricultura.pr.gov.br. Accessed 28 Aug 2022

  5. Bhutta ZA, Salam RA (2012) Global nutrition epidemiology and trends. Ann Nutr Metab 61(Suppl. 1):19–27

    Article  CAS  PubMed  Google Scholar 

  6. Kumssa DB, Joy EJ, Ander EL, Watts MJ, Young SD, Walker S, Broadley MR (2015) Dietary calcium and zinc deficiency risks are decreasing but remain prevalent. Sci Rep 5(1):1–11

    Article  Google Scholar 

  7. Ulbrich NCM, do Prado LL, Barbosa JZ, Araujo EM, Poggere G, Motta ACV, Prior SA, Magri E, Young SD, Broadley MR (2022) Multi-elemental analysis and health risk assessment of commercial yerba mate from Brazil. Biol Trace Elem Res 200(3):1455–1463. https://doi.org/10.1007/s12011-021-02736-9

    Article  CAS  Google Scholar 

  8. Magri E, Valduga AT, Gonçalves IL et al (2021) Cadmium and lead concentrations in yerba mate leaves from agroforestry and plantation systems: an international survey in South America. J Food Compos Anal 96:103702. https://doi.org/10.1016/j.jfca.2020.103702

    Article  CAS  Google Scholar 

  9. Motta ACV, Barbosa JZ, Magri E, Pedreira GQ, Santin D, Prior SA, Consalter R, Young SD, Broadley MR, Benedetti EL (2020) Elemental composition of yerba mate (Ilex paraguariensis A.St.-Hil.) under low input systems of southern Brazil. Sci Total Environ 736:139637. https://doi.org/10.1016/j.scitotenv.2020.139637

    Article  CAS  PubMed  Google Scholar 

  10. Magri E, Barboza JZ, Corrêa RS, Auler AC, Valduga AT, Motta ACV (2022) Linking edaphoclimatic conditions with elementary composition of yerba mate leaves in South America. J Food Compos Anal 107:104360. https://doi.org/10.1016/j.jfca.2021.104360

    Article  CAS  Google Scholar 

  11. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. Taylor & Francis, London, New York, p 505

    Google Scholar 

  12. Marques JJ, Burille C, Schuster C, Brandoli MAA, Rocha D, Bresolin B, Rodrigues P, Cardoso D, Brock M, Mallmann A, Silveira JS da (2013) Erva-mate: guia para aplicação de boas práticas agrícolas. Lajeado, RS: Emater/RS-Ascar, 80

  13. Benedetti EL, Santin D, de Barros NF, Pereira GL, Martinez HP, Neves JCL (2017) Alumínio estimula o crescimento radicular de erva-mate? Pesq Flor Bras 37(90):139–147. https://doi.org/10.4336/2017.pfb.37.90.983

    Article  Google Scholar 

  14. Magri E, Gugelmin EK, Gragarski FAP, Barbosa JZ, Auler AC, Wendling I, Prior SA, Valduga AT, Motta ACV (2020) Manganese hyperaccumulation capacity of Ilex paraguariensis A. St. Hil. and occurrence of interveinal chlorosis induced by transient toxicity. Ecotoxicol Environ Safety 203:111010. https://doi.org/10.1016/j.ecoenv.2020.111010

    Article  CAS  PubMed  Google Scholar 

  15. Barbosa JZ, Motta ACV, Consalter R, Poggere GC, Santin D, Wendling I (2018) Plant growth, nutrients and potentially toxic elements in leaves of yerba mate clones in response to phosphorus in acid soils. An Acad Bras Ciênc 90(1):557–571. https://doi.org/10.1590/0001-3765201820160701

    Article  CAS  PubMed  Google Scholar 

  16. Toppel FV, Junior AM, Motta ACV, Frigo C, Magri E, Barbosa JZ (2018) Soil chemical attributes and their influence on elemental composition of yerba mate leaves. Floresta 48(3):425–434. https://doi.org/10.5380/rf.v48i3.56677

    Article  Google Scholar 

  17. Pozebon D, Dressler VL, Marcelo MCA et al (2015) Toxic and nutrient elements in yerba mate (Ilex paraguariensis). Food Addit Contam Part B Surveill 8(3):215–220. https://doi.org/10.1080/19393210.2015.1053420

    Article  CAS  PubMed  Google Scholar 

  18. Frigo C, Magri E, Barbosa JZ, Sarteretto LM, Araujo EM, de Melo VF, Prior SA, Motta ACV (2020) Influence of roadways on heavy metal content in soils and yerba mate tissue in southern Brazil. Manag Environ Qual 31(6):1477–1495. https://doi.org/10.1108/MEQ-10-2019-0219

    Article  Google Scholar 

  19. da Marques AC, dos Reis MS, Denardin VF (2019) As paisagens da erva-mate: uso das florestas e conservação socioambiental. Ambiente and Sociedade 22:02822

    Google Scholar 

  20. Reis AR dos, Rodak BW, Putti FF, Moraes MF de (2014) Papel fisiológico do níquel: essencialidade e toxidez em plantas. Encarte de Informações Agronômicas 147. Available in: http://www.ipni.net/publication/iabrasil.nsf/0/0A37B421DA0EA5F383257D660046D009/$FILE/Page10-24-147.pdf. Accessed 14 Dec 2021

  21. Seenivasan S, Anderson TA, Muraleedharan N (2016) Heavy metal content in tea soils and their distribution in different parts of tea plants, Camellia sinensis (L). O. Kuntze. Environ Monit Assess 188(7):428. https://doi.org/10.1007/s10661-016-5440-y

    Article  CAS  PubMed  Google Scholar 

  22. Marques R, Motta ACV (2003) Analise química do solo para fins de fertilidade. In: de Lima MR (ed) Manual de diagnóstico da fertilidade e manejo dos solos agrícolas, 2nd edn. Departamento de Solos e Engenharia Agrícola, Curitiba, pp 81–102

    Google Scholar 

  23. Dane JH, Topp CG, Campbell GS (2002) Particle size analysis. In: Methods of Soil Analysis. Part 4: Physical Methods, 5. Soil Science Society of America Book Series 255-293

  24. Wendling I, Santin D, Nagaoka R, Sturion JA (2017) BRS BLD Aupaba e BRS BLD Yari: cultivares clonais de erva-mate para produção de massa foliar de sabor suave. Embrapa Florestas - Comunicado Técnico, ISSN 1980-3982, Colombo, PR. Available in: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1083388/brs-bld-aupaba-e-brs-bld-yari-cultivares-clonais-de-erva-mate-para-producao-de-massa-foliar-de-sabor-suave. Accessed 15 Jan 2020

  25. Martins APL, Reissmann CB (2007) Material vegetal e as rotinas laboratoriais nos procedimentos químico analíticos. Sci Agrar 8:1–17

    Google Scholar 

  26. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available in: https://www.R.project. Accessed 20 Jan 2022

  27. Abreu CA, Coscione AR, Pires AM, Paz-Ferreiro J (2012) Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. J Geochem Explor 123:3–7. https://doi.org/10.1016/j.gexplo.2012.04.013

    Article  CAS  Google Scholar 

  28. Barman M, Datta SP, Rattan RK, Meena MC (2020) Critical limits of deficiency of nickel in intensively cultivated alluvial soils. J Soil Sci Plant Nutr 20(1):284–292. https://doi.org/10.1007/s42729-019-00141-9

    Article  CAS  Google Scholar 

  29. Barrera AAA, Alvarez OC, Rodríguez OAH, Mendoza AB, Melendez LRO, Caballero MCS, Barrios DLO (2022) Do foliar applications of nickel increase urease activity and nutrient levels in pecan leaflets? Plant, Soil Environ 68:129–136. https://doi.org/10.17221/487/2021-PSE

    Article  Google Scholar 

  30. Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) Jack bean urease (EC 3.5.1.5) a metalloenzyme: simple biological role for nickel. J Am Chem Soc 97(14):4131–4133

    Article  CAS  PubMed  Google Scholar 

  31. Davis MA, Pritchard SG, Boyd RS, Prior SA (2001) Developmental and induced responses of nickel-based and organic defences of the nickel-hyperaccumulating shrub, Psychotria douarrei. New Phytol 150:49–58. https://doi.org/10.1046/j.1469-8137.2001.00067.x

    Article  CAS  Google Scholar 

  32. Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P (2015) Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci 6:754. https://doi.org/10.3389/fpls.2015.00754

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fernandes ALT, Calzavara SA, Paseto LA, Silva FH (2011) Avaliação de diferentes doses de níquel (Ni) no desenvolvimento vegetativo e produtivo do cafeeiro irrigado cultivado no Noroeste de Minas Gerais. Trabalho de Conclusão de Curso (Graduação em Agronomia) - Faculdades Associadas de Uberaba

  34. Lopes JF, Coelho FC, Rangel OJP, Rabello WS, de Gravina G, Vieira HD (2014) Adubação foliar com níquel e molibdênio no feijoeiro comum cv. Ouro Vermelho. Rev Ceres 61(2):234–240

    Article  Google Scholar 

  35. Verkleij JAC, Parest JE (1989) Cadmium tolerance and co-tolerance in Silene vulgaris (Moench.) Garcke [= S. cucubalus (L.) wilb.]. New Phytol 111:637–645. https://doi.org/10.1111/j.1469-8137.1989.tb02358.x

    Article  CAS  PubMed  Google Scholar 

  36. Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117. https://doi.org/10.1111/j.1399-3054.1996.tb00486.x

    Article  CAS  Google Scholar 

  37. Yang X, Baligar VC, Martens DC, Clark RB (1996) Plant tolerance to nickel toxicity: 2- nickel effects on influx and transport of mineral nutrients in four plant species. J Plant Nutr 19(2):265–279. https://doi.org/10.1080/01904169609365121

    Article  CAS  Google Scholar 

  38. Brooks RR (1980) Accumulation of nickel by terrestrial plants. In: NRIAGU, J. O. Nickel in the environment. New York, 407–430

  39. Welch RM (1981) The biological significance of nickel. J Plant Nutr 3:345–356

    Article  CAS  Google Scholar 

  40. Barbosa JZ, Zambon LM, Motta ACV, Wendling I (2015) Composition, hot-water solubility of elements and nutritional value of fruits and leaves of yerba-mate. Ciência e Agrotecnologia 39(6):593–603. https://doi.org/10.1590/S1413-70542015000600006

    Article  CAS  Google Scholar 

  41. Zhang J, Yang R, Li YC, Peng Y, Wen X, Ni X (2020) Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicol Environ Safety 195:110475. https://doi.org/10.1016/j.ecoenv.2020.110475

    Article  CAS  PubMed  Google Scholar 

  42. Li W, Cheng H, Mu Y, Xu A, Ma B, Wang F, Xu P (2021) Occurrence, accumulation, and risk assessment of trace metals in tea (Camellia sinensis): a national reconnaissance. Sci Total Environ 792:148354. https://doi.org/10.1016/j.scitotenv.2021.148354

    Article  CAS  PubMed  Google Scholar 

  43. Wen B, Li L, Duan Y, Zhang Y, Shen J, Xia M, Zhu X (2018) Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: the concentrations, spatial relationship and potential control. Chemosphere 204:92–100

    Article  CAS  Google Scholar 

  44. Kozhevnikova AD, Seregin IV, Bystrova EI, Belyaeva AI, Kataeva MN, Ivanov VB (2009) The effects of lead, nickel, and strontium nitrates on cell division and elongation in maize roots. Russ J Plant Physiol 56(2):242–250. https://doi.org/10.1134/S1021443709020137

    Article  CAS  Google Scholar 

  45. Sadeghipour O (2021) Chitosan application improves nickel toxicity tolerance in soybean. J Soil Sci Plant Nutr 21(3):2096–2104. https://doi.org/10.1007/s42729-021-00505-0

    Article  CAS  Google Scholar 

  46. Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant And Soil 293(1–2):107–119. https://doi.org/10.1007/s11104-007-9192-x

    Article  CAS  Google Scholar 

  47. Ma G, Zhang J, Zhang L, Huang C, Chen L, Wang G, Lu C (2019) Elements characterization of Chinese tea with different fermentation degrees and its use for geographical origins by liner discriminant analysis. J Food Compos Anal 82:103246. https://doi.org/10.1016/j.jfca.2019.103246

    Article  CAS  Google Scholar 

  48. Zhong WS, Ren T, Zhao LJ (2016) Determination of Pb (lead), Cd (cadmium), Cr (chromium), Cu (copper), and Ni (nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. J Food Drug Anal 24(1):46–55. https://doi.org/10.1016/j.jfda.2015.04.010

    Article  CAS  Google Scholar 

  49. Marcos A, Fisher A, Rea G, Hill Steve J (1998) Preliminary study using trace element concentrations and a chemometrics approach to determine the geographical origin of tea. J Anal At Spectrom 13:521–525. https://doi.org/10.1039/A708658J

    Article  CAS  Google Scholar 

  50. Nookabkaew S, Rangkadilok N, Satayavivad J (2006) Determination of trace elements in herbal tea products and their infusions consumed in Thailand. J Agric Food Chem 54:6939–6944. https://doi.org/10.1021/jf060571w

    Article  CAS  PubMed  Google Scholar 

  51. Brzezicha-Cirocka J, Grembecka M, Szefer P (2016) Monitoring of essential and heavy metals in green tea from different geographical origins. Environ Monit Assess 188(3):183. https://doi.org/10.1007/s10661-016-5157-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Szymczycha-Madeja A, Welna M, Zyrnicki W (2013) Multi-element analysis, bioavailability and fractionation of herbal tea products. J Braz Chem Soc 24(5):777–787. https://doi.org/10.5935/0103-5053.20130102

    Article  CAS  Google Scholar 

  53. Uren NC (1992) Forms, reaction and availability of nickel n soils. Adv Agron 48:141–203

    Article  CAS  Google Scholar 

  54. Palacios G, Gómez I, Carbonell-Barrachina A, Navarro PJ, Mataix J (1998) Effect of nickel concentration on tomato plant nutrition and dry matter yield. J Plant Nutr 21(10):2179–2191. https://doi.org/10.1080/01904169809365553

    Article  CAS  Google Scholar 

  55. Roveda LF, Cuquel FL, Motta ACV, de Melo VF (2014) Composto orgânico com altos teores de níquel e sua biodisponibilidade no sistema solo planta. Rev Bras Eng Agríc Ambient 18(8):819–825. https://doi.org/10.1590/1807-1929/agriambi.v18n08p819-825

    Article  Google Scholar 

  56. da Silva RF, Weirich SW, da Ros CO, Scheid DL, Grolli AL, Viel P (2015) Acumulação e translocação de zinco em mudas de espécies do gênero Eucalyptus e Corymbia. Rev Bras Eng Agríc Ambient 19(11):1114–1120. https://doi.org/10.1590/1807-1929/agriambi.v19n11p1114-1120

    Article  Google Scholar 

  57. Tito GA, Chaves LHG, de Vasconcelos ACF (2016) Acúmulo e translocação de cobre e zinco em plantas de Crambe abyssinica. Rev Verde Agroecologia e Desenvolvimento Sustentável 11(4):12–16. https://doi.org/10.18378/rvads.v11i4.4539

    Article  Google Scholar 

  58. Althaus D, Gianello C, Tedesco MJ, Silva KJD, Bissani CA, Felisberto R (2018) Natural fertility and metals contents in soils of Rio Grande do Sul (Brazil). Rev Bras Ciênc Solo 42:1–15. https://doi.org/10.1590/18069657rbcs20160418

    Article  CAS  Google Scholar 

  59. Reissmann CB, Radomski MI, de Quadros RMB (1999) Chemical composition of Ilex paraguariensis St. Hil. under different management conditions in seven localities of Paraná State. Braz Arch Biol Technol 42(2):187–194. https://doi.org/10.1590/S1516-89131999000200009

    Article  CAS  Google Scholar 

  60. Giulian R, dos Santos CEI (2009) Shubeita S de M, Silva LM da, Yoneama ML, Dias JF (2009) The study of the influence of industrial processing on the elemental composition of mate tea leaves (Ilex paraguariensis) using the PIXE technique. Food Sci Technol 42(1):74–80. https://doi.org/10.1016/j.lwt.2008.05.007

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Council for Scientific and Technological Development (CNPq) (Grant Numbers 306908/2016–6 and 311304/2019–2) and to the Coordination for the Improvement of Higher Education Personnel (CAPES) for scholarship financial support.

Author information

Authors and Affiliations

Authors

Contributions

Nayara Caroline Majewski Ulbrich: writing—original draft, conceptualization, methodology, investigation, software, formal analysis. Antônio Carlos Vargas Motta: writing—review & editing, conceptualization, methodology, investigation. Ederlan Magri: writing—review & editing, conceptualization, investigation, software, formal analysis. Stephen A. Prior: writing—review & editing, investigation. Carla Gomes de Albuquerque: review & editing, methodology, investigation. Fabiana Gavelaki: review & editing, methodology, investigation. Julierme Zimmer Barbosa: review & editing, investigation. Ivar Wendling: review & editing, investigation. Giovana Poggere: review & editing, conceptualization, methodology, investigation.

Corresponding author

Correspondence to Nayara Caroline Majewski Ulbrich.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 806 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulbrich, N.C.M., Motta, A.C.V., Magri, E. et al. Accumulation Capacity of Nickel and Zinc in Yerba Mate Cultivated in Soils with Contrasting Parent Materials. Biol Trace Elem Res 201, 5468–5480 (2023). https://doi.org/10.1007/s12011-023-03593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03593-4

Keywords

Navigation