Skip to main content
Log in

Bioaccumulation and Health Risk Assessment of Metals in Small-Sized Fish (Rhodeus sinensis, Ctenogobius giurinus) and Mussel (Cristaria plicata) from a River Reservoir, Southwest China

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In order to assess the bioaccumulation and health risk of metals in a river reservoir, concentrations of copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) in the water, sediments, two small-sized fish, and a freshwater mussel from the Zhoubai reservoir were examined. The results indicated that all of these metals conform with class one of environmental quality standards for surface water (State Environmental Protection Administration of China, GB 3838–2002). There were no significant differences for total metal concentrations in sediment between the three sampling sites (p > 0.05), but the bioavailable concentrations in S3 were the lowest. The Cd was dominated with exchangeable fraction and showed considerable risk. All metal concentrations except for Pb in Rhodeus sinensis were significantly higher than those in Ctenogobius giurinus (p < 0.05). The metal concentrations in Cristaria plicata showed a similar pattern of bioavailable metals in sediment, indicating that the metal concentrations in aquatic organisms were determined by the bioavailable forms of metals. Negative correlations were observed between the size of fish and concentrations of Cu, Zn, Pb, Cd, and As. However, significant positive correlations were found between the size of mussel and concentrations of Cd (p < 0.01), As (p < 0.05), and Hg (p < 0.01). Zn had the highest BCF values in fish and mussel. The aquatic organisms showed lower ability of metal bioaccumulation from the sediment. Low values of target hazard quotient (THQ), hazard index (HI), and carcinogenic risk (CR) indicated that these metals do not pose a health risk to public through fish and mussel consumption in this study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sheikhzadeh H, Hamidian AH (2021) Bioaccumulation of heavy metals in fish species of Iran: a review. Environ Geochem Hlth 43(10):3749–3869. https://doi.org/10.1007/s10653-021-00883-5

    Article  CAS  Google Scholar 

  2. Hanfi MY, Mostafa MYA, Zhukovsky MV (2020) Heavy metal contamination in urban surface sediments: sources, distribution, contamination control, and remediation. Environ Monit Assess 192(1). https://doi.org/10.1007/s10661-019-7947-5

  3. Varol M, Karakaya G, Sünbül MR (2021) Spatiotemporal variations, health risks, pollution status and possible sources of dissolved trace metal(loid)s in the Karasu River, Turkey. Environ Res 202:111733. https://doi.org/10.1016/j.envres.2021.111733

    Article  CAS  PubMed  Google Scholar 

  4. Canpolat Ö, Varol M, Okan ÖÖ, Eriş KK, Çağlar M (2020) A comparison of trace element concentrations in surface and deep water of the Keban Dam Lake (Turkey) and associated health risk assessment. Environ Res 190:110012. https://doi.org/10.1016/j.envres.2020.110012

    Article  CAS  PubMed  Google Scholar 

  5. Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407(13):3972–3985. https://doi.org/10.1016/j.scitotenv.2008.07.025

    Article  CAS  PubMed  Google Scholar 

  6. Varol M, Ustaoğlu F, Tokatlı C (2022) Ecological risks and controlling factors of trace elements in sediments of dam lakes in the Black Sea Region (Turkey). Environ Res 205:112478. https://doi.org/10.1016/j.envres.2021.112478

    Article  CAS  PubMed  Google Scholar 

  7. Varol M, Canpolat Ö, Eriş KK, Çağlar M (2020) Trace metals in core sediments from a deep lake in eastern Turkey: Vertical concentration profiles, eco-environmental risks and possible sources. Ecotox Environ Safe 189:110060. https://doi.org/10.1016/j.ecoenv.2019.110060

    Article  CAS  Google Scholar 

  8. Nemati K, Bakar NKA, Abas MR, Sobhanzadeh E (2011) Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor. Malaysia J Hazard Mater 192(1):402–410. https://doi.org/10.1016/j.jhazmat.2011.05.039

    Article  CAS  PubMed  Google Scholar 

  9. Xu L, Wang T, Wang J, Lu A (2017) Occurrence, speciation and transportation of heavy metals in 9 coastal rivers from watershed of Laizhou Bay, China. Chemosphere 173:61–68. https://doi.org/10.1016/j.chemosphere.2017.01.046

    Article  CAS  PubMed  Google Scholar 

  10. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051

    Article  CAS  Google Scholar 

  11. Lei P, Zhang H, Shan B, Lv S, Tang W (2016) Heavy metals in estuarine surface sediments of the Hai River Basin, variation characteristics, chemical speciation and ecological risk. Environ Sci Pollut Res 23(8):7869–7879. https://doi.org/10.1007/s11356-016-6059-9

    Article  CAS  Google Scholar 

  12. Nemati K, Bakar NKA, Abas MR (2009) Investigation of heavy metals mobility in shrimp aquaculture sludge—Comparison of two sequential extraction procedures. Microchem J 91(2):227–231. https://doi.org/10.1016/j.microc.2008.12.001

    Article  CAS  Google Scholar 

  13. Kumar M, Gupta N, Ratn A, Awasthi Y, Prasad R, Trivedi A, Trivedi SP (2020) Biomonitoring of heavy metals in River Ganga water, sediments, plant, and fishes of different trophic levels. Biol Trace Elem Res 193(2):536–547. https://doi.org/10.1007/s12011-019-01736-0

    Article  CAS  PubMed  Google Scholar 

  14. Chua EM, Flint N, Wilson SP, Vink S (2018) Potential for biomonitoring metals and metalloids using fish condition and tissue analysis in an agricultural and coal mining region. Chemosphere 202:598–608. https://doi.org/10.1016/j.chemosphere.2018.03.080

    Article  CAS  PubMed  Google Scholar 

  15. Varol M, Sünbül MR (2018) Biomonitoring of trace metals in the Keban Dam Reservoir (Turkey) Using mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus). Biol Trace Elem Res 185(1):216–224. https://doi.org/10.1007/s12011-017-1238-1

    Article  CAS  PubMed  Google Scholar 

  16. Jia Y, Wang L, Qu Z, Wang C, Yang Z (2017) Effects on heavy metal accumulation in freshwater fishes: species, tissues, and sizes. Environ Sci Pollut Res 24(10):9379–9386. https://doi.org/10.1007/s11356-017-8606-4

    Article  CAS  Google Scholar 

  17. Jiang X, Wang J, Pan B, Li D, Wang Y, Liu X (2022) Assessment of heavy metal accumulation in freshwater fish of Dongting Lake, China: Effects of feeding habits, habitat preferences and body size. J Environ Sci 112:355–365. https://doi.org/10.1016/j.jes.2021.05.004

    Article  CAS  Google Scholar 

  18. Lin Z, Xu XY, Xie MW, Chen R, Tan QG (2021) Measuring metal uptake and loss in individual organisms: A novel double stable isotope method and its application in explaining body size effects on cadmium concentration in mussels. Environ Sci Technol 55(14):9979–9988. https://doi.org/10.1021/acs.est.1c01582

    Article  CAS  PubMed  Google Scholar 

  19. Merciai R, Guasch H, Kumar A, Sabater S, Garcia-Berthou E (2014) Trace metal concentration and fish size: Variation among fish species in a Mediterranean river. Ecotox Environ Safe 107:154–161. https://doi.org/10.1016/j.ecoenv.2014.05.006

    Article  CAS  Google Scholar 

  20. Saavedra Y, González A, Fernández P, Blanco J (2004) The effect of size on trace metal levels in raft cultivated mussels (Mytilus galloprovincialis). Sci Total Environ 318(1):115–124. https://doi.org/10.1016/S0048-9697(03)00402-9

    Article  CAS  PubMed  Google Scholar 

  21. Danabaş D, Kutluyer F, Ural M, Özçelik M, Kocabaş M (2022) Age- and sex-specific bioaccumulation of selected metals in freshwater mussel (Unio elangatulus eucirrus Bourguignat, 1860) populating from Keban dam lake (Elazig, Turkey). B Environ Contam Tox 108(2):366–371. https://doi.org/10.1007/s00128-021-03414-1

    Article  CAS  Google Scholar 

  22. Balzani P, Kouba A, Tricarico E, Kourantidou M, Haubrock PJ (2022) Metal accumulation in relation to size and body condition in an all-alien species community. Environ Sci Pollut Res 29(17):25848–25857. https://doi.org/10.1007/s11356-021-17621-0

    Article  CAS  Google Scholar 

  23. Yi YJ, Zhang SH (2012) Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environ Sci Pollut Res 19(9):3989–3996. https://doi.org/10.1007/s11356-012-0840-1

    Article  CAS  Google Scholar 

  24. Varol M, Sünbül MR (2020) Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environ Res 184:109298. https://doi.org/10.1016/j.envres.2020.109298

    Article  CAS  PubMed  Google Scholar 

  25. Olmedo P, Pla A, Hernández AF, Barbier F, Ayouni L, Gil F (2013) Determination of toxic elements (mercury, cadmium, lead, tin and arsenic) in fish and shellfish samples. Risk assessment for the consumers. Environ Int 59:63–72. https://doi.org/10.1016/j.envint.2013.05.005

    Article  CAS  PubMed  Google Scholar 

  26. Cai SW, Zhou SQ, Cheng JW, Wang QH, Dai Y (2021) Distribution, bioavailability and ecological risk of heavy metals in surface sediments from the Wujiang River Basin, southwest of China. Pol J Environ Stud 30(6):5479–5491. https://doi.org/10.15244/pjoes/136185

    Article  CAS  Google Scholar 

  27. Cai SW, Ni ZH, Liu B, Fan LL (2017) Metal concentrations and health risk assessment in the muscle of ten commercial fish species from the Chishui River. China Int J Environ Res 11(2):125–132. https://doi.org/10.1007/s41742-017-0013-7

    Article  CAS  Google Scholar 

  28. Håkanson L (1980) An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res 14(8):975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  29. Yi Y, Yang Z, Zhang S (2011) Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ Pollut 159(10):2575–2585. https://doi.org/10.1016/j.envpol.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  30. Bi B, Liu X, Guo X, Lu S (2018) Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake. China Environ Sci Pollut Res 25(34):34076–34090. https://doi.org/10.1007/s11356-018-3329-8

    Article  CAS  Google Scholar 

  31. Li R, Tang C, Li X, Jiang T, Shi Y, Cao Y (2019) Reconstructing the historical pollution levels and ecological risks over the past sixty years in sediments of the Beijiang River, South China. Sci Total Environ 649:448–460. https://doi.org/10.1016/j.scitotenv.2018.08.283

    Article  CAS  PubMed  Google Scholar 

  32. Voigt CL, da Silva CP, Doria HB, Randi MAF, de Oliveira Ribeiro CA, de Campos SX (2015) Bioconcentration and bioaccumulation of metal in freshwater Neotropical fish Geophagus brasiliensis. Environ Sci Pollut Res 22(11):8242–8252. https://doi.org/10.1007/s11356-014-3967-4

    Article  CAS  Google Scholar 

  33. Djikanović V, Skorić S, Spasić S, Naunovic Z, Lenhardt M (2018) Ecological risk assessment for different macrophytes and fish species in reservoirs using biota-sediment accumulation factors as a useful tool. Environ Pollut 241:1167–1174. https://doi.org/10.1016/j.envpol.2018.06.054

    Article  CAS  PubMed  Google Scholar 

  34. USEPA (2021) Risk-based concentration table. Washington, DC: United States Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. Accessed 20 Aug 2021

  35. Buchet JP, Lison D, Ruggeri M, Foa V, Elia G, Maugeri S (1996) Assessment of exposure to inorganic arsenic, a human carcinogen, due to the consumption of seafood. Arch Toxicol 70(11):773–778. https://doi.org/10.1007/s002040050339

    Article  CAS  PubMed  Google Scholar 

  36. Brondi M, Dall’aglio M, Ghiara E, Gragnani R (1986) Analysis of trace elements in natural waters. Chem Ecol 2(4):289–299. https://doi.org/10.1080/02757548608080734

    Article  CAS  Google Scholar 

  37. Gao Q, Li Y, Cheng Q, Yu M, Hu B, Wang Z, Yu Z (2016) Analysis and assessment of the nutrients, biochemical indexes and heavy metals in the Three Gorges Reservoir, China, from 2008 to 2013. Water Res 92:262–274. https://doi.org/10.1016/j.watres.2015.12.055

    Article  CAS  PubMed  Google Scholar 

  38. Lin L, Li C, Yang W, Zhao L, Liu M, Li Q, Crittenden JC (2020) Spatial variations and periodic changes in heavy metals in surface water and sediments of the Three Gorges Reservoir. China. Chemosphere 240:124837. https://doi.org/10.1016/j.chemosphere.2019.124837

    Article  CAS  PubMed  Google Scholar 

  39. Gao L, Gao B, Xu D, Peng W, Lu J (2019) Multiple assessments of trace metals in sediments and their response to the water level fluctuation in the Three Gorges Reservoir, China. Sci Total Environ 648:197–205. https://doi.org/10.1016/j.scitotenv.2018.08.112

    Article  CAS  PubMed  Google Scholar 

  40. Meng B, Feng XB, Qiu GL, Li ZG, Yao H, Shang LH, Yan HY (2016) The impacts of organic matter on the distribution and methylation of mercury in a hydroelectric reservoir in Wujiang river, southwest China. Environ Toxicol Chem 35(1):191–199. https://doi.org/10.1002/etc.3181

    Article  CAS  PubMed  Google Scholar 

  41. Jiang H, Feng X, Li G, Qiu G, Yan H (2007) Seasonal distribution of total mercury and methylmercury in sediments of the Wujiangdu Reservoir, Guizhou, China. Chin J Geochem 26(4):414–417. https://doi.org/10.1007/s11631-007-0414-y

    Article  CAS  Google Scholar 

  42. Canpolat Ö, Varol M, Okan ÖÖ, Eriş KK (2022) Sediment contamination by trace elements and the associated ecological and health risk assessment: a case study from a large reservoir (Turkey). Environ Res 204:112145. https://doi.org/10.1016/j.envres.2021.112145

    Article  CAS  PubMed  Google Scholar 

  43. Lee P-K, Kang M-J, Yu S, Ko K-S, Ha K, Shin S-C, Park JH (2017) Enrichment and geochemical mobility of heavy metals in bottom sediment of the Hoedong reservoir, Korea and their source apportionment. Chemosphere 184:74–85. https://doi.org/10.1016/j.chemosphere.2017.05.124

    Article  CAS  PubMed  Google Scholar 

  44. Baran A, Tarnawski M, Koniarz T (2016) Spatial distribution of trace elements and ecotoxicity of bottom sediments in Rybnik reservoir. Silesian-Poland Environ Sci Pollut Res 23(17):17255–17268. https://doi.org/10.1007/s11356-016-6678-1

    Article  CAS  Google Scholar 

  45. Hiller E, Jurkovič Ľ, Šutriepka M (2010) Metals in the surface sediments of selected water reservoirs. Slovakia B Environ Contam Tox 84(5):635–640. https://doi.org/10.1007/s00128-010-0008-y

    Article  CAS  Google Scholar 

  46. Wu Q, Zhou H, Tam NFY, Tian Y, Tan Y, Zhou S, Li Q, Chen Y, Leung JYS (2016) Contamination, toxicity and speciation of heavy metals in an industrialized urban river: Implications for the dispersal of heavy metals. Mar Pollut Bull 104(1):153–161. https://doi.org/10.1016/j.marpolbul.2016.01.043

    Article  CAS  PubMed  Google Scholar 

  47. Saleem M, Iqbal J, Akhter G, Shah MH (2018) Fractionation, bioavailability, contamination and environmental risk of heavy metals in the sediments from a freshwater reservoir, Pakistan. J Geochem Explor 184:199–208. https://doi.org/10.1016/j.gexplo.2017.11.002

    Article  CAS  Google Scholar 

  48. Ma X, Zuo H, Tian M, Zhang L, Meng J, Zhou X, Min N, Chang X, Liu Y (2016) Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 144:264–272. https://doi.org/10.1016/j.chemosphere.2015.08.026

    Article  CAS  PubMed  Google Scholar 

  49. Cai SW, Zhou SQ, Cheng JW, Wang QH, Dai Y (2022) Heavy metals speciation and distribution of microbial communities in sediments from the abandoned Mo-Ni polymetallic mines, southwest of China. Environ Sci Pollut Res 29(23):35350–35364. https://doi.org/10.1007/s11356-022-18697-y

    Article  CAS  Google Scholar 

  50. Lin S, Liu X, Zhang Z, Zhang Q (2022) Speciation characteristics and ecological risk assessment of heavy metals in sediments from Caohai Lake, Guizhou Province. Stoch Env Res Risk A 36(11):3929–3944. https://doi.org/10.1007/s00477-022-02236-9

    Article  Google Scholar 

  51. Kang MX, Tian YM, Peng S, Wang MQ (2019) Effect of dissolved oxygen and nutrient levels on heavy metal contents and fractions in river surface sediments. Sci Total Environ 648:861–870. https://doi.org/10.1016/j.scitotenv.2018.08.201

    Article  CAS  PubMed  Google Scholar 

  52. Xu D, Wang Y, Zhang R, Guo J, Zhang W, Yu K (2016) Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River. Southwest China Environ Sci Pollut Res 23(9):9122–9133. https://doi.org/10.1007/s11356-016-6147-x

    Article  CAS  Google Scholar 

  53. Sundaray SK, Nayak BB, Lin S, Bhatta D (2011) Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin. India J Hazard Mater 186(2):1837–1846. https://doi.org/10.1016/j.jhazmat.2010.12.081

    Article  CAS  PubMed  Google Scholar 

  54. Yang Z, Wang Y, Shen Z, Niu J, Tang Z (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan. China J Hazard Mater 166(2):1186–1194. https://doi.org/10.1016/j.jhazmat.2008.12.034

    Article  CAS  PubMed  Google Scholar 

  55. Reichard M, Liu HZ, Smith C (2007) The co-evolutionary relationship between bitterling fishes and freshwater mussels: insights from interspecific comparisons. Evol Ecol Res 9(2):239–259 (https://www.researchgate.net/publication/228780113)

    Google Scholar 

  56. Andres S, Ribeyre F, Tourencq JN, Boudou A (2000) Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Sci Total Environ 248(1):11–25. https://doi.org/10.1016/S0048-9697(99)00477-5

    Article  CAS  PubMed  Google Scholar 

  57. Ali H, Khan E (2018) Assessment of potentially toxic heavy metals and health risk in water, sediments, and different fish species of River Kabul. Pakistan Hum Ecol Risk Assess 24(8):2101–2118. https://doi.org/10.1080/10807039.2018.1438175

    Article  CAS  Google Scholar 

  58. Canli M, Atli G (2003) The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ Pollut 121(1):129–136. https://doi.org/10.1016/S0269-7491(02)00194-X

    Article  CAS  PubMed  Google Scholar 

  59. Obaidat MM, Massadeh AM, Al-Athamneh AM, Jaradat QM (2015) Heavy metals in fish from the Red Sea, Arabian Sea, and Indian Ocean: effect of origin, fish species and size and correlation among the metals. Environ Monit Assess 187(4):218. https://doi.org/10.1007/s10661-015-4463-0

    Article  CAS  PubMed  Google Scholar 

  60. Barone G, Giacominelli-Stuffler R, Storelli MM (2013) Comparative study on trace metal accumulation in the liver of two fish species (Torpedinidae): Concentration–size relationship. Ecotox Environ Safe 97:73–77. https://doi.org/10.1016/j.ecoenv.2013.07.004

    Article  CAS  Google Scholar 

  61. Suhareva N, Aigars J, Poikane R, Jansons M (2020) Development of fish age normalization technique for pollution assessment of marine ecosystem, based on concentrations of mercury, copper, and zinc in dorsal muscles of fish. Environ Monit Assess 192(5):279. https://doi.org/10.1007/s10661-020-08261-x

    Article  CAS  PubMed  Google Scholar 

  62. Verdouw JJ, Macleod CK, Nowak BF, Lyle JM (2011) Implications of age, size and region on mercury contamination in estuarine fish species. Water Air Soil Poll 214(1):297–306. https://doi.org/10.1007/s11270-010-0424-y

    Article  CAS  Google Scholar 

  63. Liu X, Jiang J, Yan Y, Dai Y, Deng B, Ding S, Su S, Sun W, Li Z, Gan Z (2018) Distribution and risk assessment of metals in water, sediments, and wild fish from Jinjiang River in Chengdu, China. Chemosphere 196:45–52. https://doi.org/10.1016/j.chemosphere.2017.12.135

    Article  CAS  PubMed  Google Scholar 

  64. Harangi S, Baranyai E, Fehér M, Tóth CN, Herman P, Stündl L, Fábián I, Tóthmérész B, Simon E (2017) Accumulation of metals in juvenile carp (Cyprinus carpio) exposed to sublethal levels of iron and manganese: Survival, body weight and tissue. Biol Trace Elem Res 177(1):187–195. https://doi.org/10.1007/s12011-016-0854-5

    Article  CAS  PubMed  Google Scholar 

  65. Lipy EP, Hakim M, Mohanta LC, Islam D, Lyzu C, Roy DC, Jahan I, Akhter S, Raknuzzaman M, Abu Sayed M (2021) Assessment of heavy metal concentration in water, sediment and common fish species of Dhaleshwari River in Bangladesh and their health implications. Biol Trace Elem Res 199(11):4295–4307. https://doi.org/10.1007/s12011-020-02552-7

    Article  CAS  PubMed  Google Scholar 

  66. La Colla NS, Botté SE, Simonetti P, Negrin VL, Serra AV, Marcovecchio JE (2021) Water, sediments and fishes: First multi compartment assessment of metal pollution in a coastal environment from the SW Atlantic. Chemosphere 282:131131. https://doi.org/10.1016/j.chemosphere.2021.131131

    Article  CAS  PubMed  Google Scholar 

  67. Storelli MM (2008) Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem Toxicol 46(8):2782–2788. https://doi.org/10.1016/j.fct.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  68. Varol M, Kaçar E, Sünbül MR (2022) Toxic and essential elements in selected fish species from the Tigris River (Turkey) and assessment of their health risks and benefits. J Food Compos Anal 113:104708. https://doi.org/10.1016/j.jfca.2022.104708

    Article  CAS  Google Scholar 

  69. Varol M, Kaçar E, Sünbül MR, Md Towfiqul Islam AR (2022) Levels of metals and elements in tissues of fish species in the Kızılırmak River (Turkey) and assessment of health risks and nutritional benefits. Environ Res 214:113791. https://doi.org/10.1016/j.envres.2022.113791

    Article  CAS  PubMed  Google Scholar 

  70. Varol M, Kaçar E, Sünbül MR, Towfiqul Islam ARM (2022) Species, tissue and gender-related metal and element accumulation in fish species in a large reservoir (Turkey) and health risks and nutritional benefits for consumers. Environ Toxicol Phar 94:103929. https://doi.org/10.1016/j.etap.2022.103929

    Article  CAS  Google Scholar 

  71. Mei Z, Cheng P, Wang K, Wei Q, Barlow J, Wang D (2020) A first step for the Yangtze. Science 367(6484):1314. https://doi.org/10.1126/science.abb5537

    Article  CAS  PubMed  Google Scholar 

  72. Zhao L, Guo Y, Meng B, Yao H, Feng X (2017) Effects of damming on the distribution and methylation of mercury in Wujiang River, Southwest China. Chemosphere 185:780–788. https://doi.org/10.1016/j.chemosphere.2017.07.077

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Education Department of Guizhou Province (No. QJJ [2022]067), and the talent base for environmental protection and mountain agricultural in Chishui River Basin.

Author information

Authors and Affiliations

Authors

Contributions

Shenwen Cai organized this study, conducted the study design, and drafted the manuscript. Ziwei Shen assisted in sample tests, data analysis and edited the manuscript. The sampling and experiments were performed by Qinghe Wang, Junwei Cheng, and Xiong Yan. Boping Zeng contributed to the study design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shenwen Cai.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors. No experiment was conducted with alive fish samples in this study. Only caught fish and mussel by local fishermen were used.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Shen, Z., Wang, Q. et al. Bioaccumulation and Health Risk Assessment of Metals in Small-Sized Fish (Rhodeus sinensis, Ctenogobius giurinus) and Mussel (Cristaria plicata) from a River Reservoir, Southwest China. Biol Trace Elem Res 201, 5401–5414 (2023). https://doi.org/10.1007/s12011-023-03590-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03590-7

Keywords

Navigation