Skip to main content
Log in

Chemical Profile of Elements in the Stingless Bee Melipona scutellaris (Hymenoptera: Apidae: Meliponini) from Sites with Distinct Anthropogenic Activities

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Stingless bees are pollinators in forests and crops that, during foraging, may be exposed to several environmental xenobiotics, including metallic elements. This study evaluated the presence of magnesium (Mg), aluminum (Al), calcium (Ca), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), molybdenum (Mo), cadmium (Cd), barium (Ba), and lead (Pb) over the body surface of the stingless bee Melipona scutellaris visiting areas with different anthropogenic activity levels. The analyses were carried out using scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM/XEDS) and all tested elements were identified. Lead was the most abundant element in all samples, whereas Mn had the lowest abundance. High amounts of Cu and Zn were detected in the areas with metallurgic industries. The presence of metals on the body surface of this stingless bee varied according to the level of human activities in the studied areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Vit P, Pedro SRM, Roubik DW (2013) Pot-honey. A legacy of stingless bees. Springer Science, New York

    Book  Google Scholar 

  2. Kevan PG (1999) Pollinators as bioindicators of the state of the environment: species, activity and diversity. Invertebrate biodiversity as bioindicators of sustainable landscapes 373–393. https://doi.org/10.1016/b978-0-444-50019-9.50021-2

  3. Spirić D, Ćirić J, Đorđević V, Nikolić D, Janković S, Nikolić A, Petrović Z, Katanić N, Teodorović V (2019) Toxic and essential element concentrations in different honey types. Int J Environ Anal Chem 99(5):474–485. https://doi.org/10.1080/03067319.2019.1593972

    Article  CAS  Google Scholar 

  4. Spirić D, Ćirić J, Ćirić V, Nikolić D, Nikolć A, Radicević T, Janković S (2019) Trace elements and heavy metals in multifloral honeys from Serbia. IOP Conference Series: Earth and Environmental Science 333. 012104. https://doi.org/10.1088/1755-1315/333/1/012104.

  5. Liu J, Goyer RA, Waalkes MP (2008) Toxic effects of metals. In: Casarett & Doull’s toxicology: the basic science of poisons. McGraw-Hill, New York

  6. Moroń D, Szentgyörgyi H, Skórka P, Potts SG, Woyciechowski M (2013) Survival, reproduction and population growth of the bee pollinator, Osmia rufa (Hymenoptera: Megachilidae), along gradients of heavy metal pollution. Insect Conserv Divers 7(2):113–121. https://doi.org/10.1111/icad.12040

    Article  Google Scholar 

  7. Di N, Hladun KR, Zhang K, Liu TX, Trumble JT (2016) Laboratory bioassays on the impact of cadmium, copper and lead on the development and survival of honeybee (Apis mellifera L.) larvae and foragers. Chemosphere 152:530–538. https://doi.org/10.1016/j.chemosphere.2016.03.033

    Article  CAS  PubMed  Google Scholar 

  8. Hladun KR, Di N, Liu TX, Trumble JT (2016) Metal contaminant accumulation in the hive: consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.). Environ Toxicol Chem 35(2):322–329. https://doi.org/10.1002/etc.3273

    Article  CAS  PubMed  Google Scholar 

  9. Cirić J, Spirić D, Baltić T, Lazić IB, Trbović D, Parunović N, Petronijević R, Đorđević V (2021) Honey bees and their products as indicators of environmental element deposition. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02321-6

  10. Fredes C, Montenegro G (2006) Heavy metals and other trace elements contents in Chilean honey. Cien Inv Agr 33:50–58

    Article  Google Scholar 

  11. Bogdanov S, Haldimann M, Luginbuhl W, Gallmann P (2015) Minerals in honey: environmental, geographical and botanical aspects. J Apic Res 46(4):269–275

    Article  Google Scholar 

  12. Kutchko BG, Kim AG (2006) Fly ash characterization by SEM–EDS. Fuel 85(17–18):2537–2544. https://doi.org/10.1016/j.fuel.2006.05.016

    Article  CAS  Google Scholar 

  13. Pellecchia M, Negri I (2018) Particulate matter collection by honey bees (Apis mellifera, L.) near to a cement factory in Italy. Peer J. https://doi.org/10.7717/peerj.5322

  14. Golob T, Doberšek U, Kump P, Nečemer M (2005) Determination of trace and minor elements in Slovenian honey by total reflection X-ray fluorescence spectroscopy. Food Chem 91(4):593–600. https://doi.org/10.1016/j.foodchem.2004.04.043

    Article  CAS  Google Scholar 

  15. Vieira, KIC, Werneck HA, Santos Júnior JE, Silva Flores DS, Serrão JE, Campos LAO, Resende HC (2020) Bees and the environmental impact of the rupture of the Fundão Dam. Integr Environ Assess Manag. 631–635. https://doi.org/10.1002/ieam.4288

  16. Santana SEA, Silva AP, Serrão JE, de Mello Affonso PRA, Nunes LA, Waldschmidt AM (2021) Chemical profile of elements in the stingless bee Melipona quadrifasciata anthidioides (Hymenoptera: Apidae). Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02951-4

  17. Michener CD, Winston ML, Jander R (1978) Pollen manipulation and related activities and structures in bees of the family Apidae. Univ Kansas Sci Bull 51:575–601

    Article  Google Scholar 

  18. Perugini M, Manera M, Grotta L, Abete MC, Tarasco R, Amorena M (2011) Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: honeybees as bioindicators. Biol Trace Elem Res 140:170–176

    Article  CAS  PubMed  Google Scholar 

  19. Biluca FC, Gois JS, Schulz M, Braghini F, Gonzaga LV, Maltez HF, Fett R (2017) Phenolic compounds, antioxidant capacity and bioaccessibility of minerals of stingless bee honey (Meliponinae). J Food Compos Anal 63:89–97. https://doi.org/10.1016/j.jfca.2017.07.039

    Article  CAS  Google Scholar 

  20. Nascimento AE, Chambó ED, Oliveira DJ, Andrade BR, Bonsucesso JS, Carvalho CAL (2018) Honey from stingless bee as indicator of contamination with metals. Sociobiology 65(4):727–736. https://doi.org/10.13102/sociobiology.v65i4.3394

  21. Zhou X, Taylor MP, Davies PJ (2018) Tracing natural and industrial contamination and lead isotopic compositions in an Australian native bee species. Environ Pollut 242:54–62. https://doi.org/10.1016/j.envpol.2018.06.063

    Article  CAS  PubMed  Google Scholar 

  22. Zafeiraki E, Sabo R, Kasiotis KM, Machera K, Sabová L, Majchrák T (2022) Adult honeybees and beeswax as indicators of trace elements pollution in a vulnerable environment: distribution among different apicultural compartments. Molecules 27:6629. https://doi.org/10.3390/molecules27196629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Puppel K, Kapusta A, Kuczyńska B (2014) The etiology of oxidative stress in the various species of animals, a review. J Sci Food Agric 95(11):2179–2184. https://doi.org/10.1002/jsfa.7015

    Article  CAS  PubMed  Google Scholar 

  24. Gauthier M, Aras P, Jumarie C, Boily M (2016) Low dietary levels of Al, Pb and Cd may affect the non-enzymatic antioxidant capacity in caged honey bees (Apis mellifera). Chemosphere 144:848–854. https://doi.org/10.1016/j.chemosphere.2015.09.057

    Article  CAS  PubMed  Google Scholar 

  25. Alves RMO, Carvalho CAL, Souza BA, Santos WS (2012) Areas of natural occurrence of Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae) in the state of Bahia, Brazil. Ann Braz Acad Sci 84:679–688. https://doi.org/10.1590/S0001-37652012000300010

    Article  Google Scholar 

  26. Kerr WE, Carvalho GA, Nascimento VA (1996) Abelha uruçu: biologia, manejo e conservação. Acangau, Belo Horizonte

  27. Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig Jr AD, Lyman CE, Fiori C, Lifshin E (1992) X-ray spectral measurement: WDS and EDS. In: Scanning electron microscopy and x-ray microanalysis. Springer, Boston. https://doi.org/10.1007/978-1-4613-0491-3_5

  28. Bonsucesso JS, Gloaguen TV, Nascimento AS, Carvalho CAL, Dias FS (2018) Metals in geoprópolis from beehive of Melipona scutellaris in urban environments. Sci Total Environ 634:687–694. https://doi.org/10.1016/j.scitotenv.2018.04.022

    Article  CAS  PubMed  Google Scholar 

  29. Morgano MA, Teixeira Martins MC, Rabonato LC, Milani RF, Yotsuyanagi K, Rodriguez-Amaya DB (2010) Inorganic contaminants in bee pollen from southeastern Brazil. J Agric Food Chem 58:6876–6883. https://doi.org/10.1021/jf100433p

    Article  CAS  PubMed  Google Scholar 

  30. Paiva HN, Carvalho JG, Siqueira JO (2002) Influência da aplicação de doses crescentes de chumbo sobre o teor e o conteúdo de nutrientes em mudas de cedro (Cedrela fissilis Vell.). Sci For 6:40–48

    Google Scholar 

  31. Thornton I, Watt JM, Davies DJA (1994) Lead contamination of UK dusts and soils and implications for childhood exposure: an overview of the work of the Environmental Geochemistry Research Group, Imperial College, London, England 1981–1992. Environ Geochem Healt 16:113–122. https://doi.org/10.1007/BF01747907

    Article  CAS  Google Scholar 

  32. Bilandzic N, Ðokic M, Sedak M, Kolanovic BS, Varenina I, Koncurat A, Rudan N (2011) Determination of trace elements in Croatian floral honey originating from different regions. Food Chem 128:1160–1164

    Article  CAS  Google Scholar 

  33. Lambert O, Piroux M, Puyo S, Thorin C, Larhantec M, Pouliquen H (2012) Bees, honey and pollen as sentinels for lead environmental contamination. Environ Pollut 170:254–259

    Article  CAS  PubMed  Google Scholar 

  34. Faquin V (2005) Nutrição Mineral de Plantas. Lavras: UFLA/FAEPE, Curso de Pós-Graduação “Lato Sensu” (Especialização) a Distância: Solos e Meio Ambiente

  35. Villanueva MTO, Marquina AD, Serrano RB, Abellan GB (2001) Mineral content of commercial pollen. Int J Food Sci Nutr 52:243–249. https://doi.org/10.1080/09637480020027000-3-1

    Article  CAS  Google Scholar 

  36. Morgano MA, Martins MCT, Rabonato LC, Milani RF, Yotsuyanagi K, Rodriguez-Amaya DB (2012) A comprehensive investigation of the mineral composition of Brazilian bee pollen: geographic and seasonal variations and contribution to human diet. J Braz Chem Soc. https://doi.org/10.1590/s0103-50532012000400019

    Article  Google Scholar 

  37. Solayman M, Islam MA, Paul S, Ali Y, Khalil MI, Alam N, Gan SH (2015) Physicochemical properties, minerals, trace elements, and heavy metals in honey of different origins: a comprehensive review. Compr Rev Food Sci Food Saf 15(1):219–233. https://doi.org/10.1111/1541-4337.12182

    Article  CAS  Google Scholar 

  38. Fernandes MS (2006) Plant mineral nutrition. Brazilian Society of Soil Science, Viçosa

    Google Scholar 

  39. Fabiano CC, Tezotto T, Favarin JL, Polacco JC, Mazzafera P (2015) Essentiality of nickel in plants: a role in plant stresses. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00754

  40. Smedley PL, Kinniburgh DG (2017) Molybdenum in natural waters: a review of occurrence, distributions and controls. Appl Geochem 84:387–432. https://doi.org/10.1016/j.apgeochem.2017.05.008

    Article  CAS  Google Scholar 

  41. Harkness JS, Darrah TH, Moore MT, Whyte CJ, Mathewson PD, Cook T, Vengosh A (2017) Naturally occurring versus anthropogenic sources of elevated molybdenum in groundwater: evidence for geogenic contamination from Southeast Wisconsin, United States. Environ Sci Technol 51(21):12190–12199. https://doi.org/10.1021/acs.est.7b03716

    Article  CAS  PubMed  Google Scholar 

  42. Tong SSC, Morse RA, Bache CA, Lisk DJ (1975) Elemental analysis of honey as an indicator of pollution. Arch Environ Health 30(7):329–332. https://doi.org/10.1080/00039896.1975.10666715

    Article  CAS  PubMed  Google Scholar 

  43. Merin U, Bernstein S, Rosenthal I (1998) A parameter for quality of honey. Food Chem 63(2):241–242

    Article  CAS  Google Scholar 

  44. Millaleo R, Reyes-Diaz M, Ivanov A, Mora M, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10(4):470–481. https://doi.org/10.4067/s0718-95162010000200008

    Article  Google Scholar 

  45. ATSDR (Agency for Toxic Substances and Disease Registry) (2012) Toxicological profile for manganese. U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  46. Yang K, Wu D, Ye X, Liu D, Chen J, Sun P (2013) Characterization of chemical composition of bee pollen in China. J Agric Food Chem 61(3):708–718. https://doi.org/10.1021/jf304056b

    Article  CAS  PubMed  Google Scholar 

  47. USEPA- United States Environmental Protection Agency (2003) Standards for the use or disposal of sewage sludge; final agency response to the National Research Council Report on biosolids applied to land and the results of EPA’s review of existing sewage sludge regulations. Federal Register 68(250):5531–75552. https://www.federalregister.gov/documents/2003/12/31/03-32217/standards-for-the-use-or-disposal-of-sewage-sludge-final-agency-response-to-the-national-research/. Accessed 25 Jan 2019

  48. Companhia de Tecnologia e Saneamento Ambiental [CETESB] (2007) Relatório de qualidade de águas subterrâneas no Estado de São Paulo 2004–2006. São Paulo

  49. Chen SL, Kao CH (1995) Glutathione reduces the inhibition of rice seedling root growth caused by cadmium. Plant Growth Regul 16(3):249–252. https://doi.org/10.1007/BF00024781

    Article  CAS  Google Scholar 

  50. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34. https://doi.org/10.1590/S1677-04202005000100003

    Article  CAS  Google Scholar 

  51. Araújo ED, Costa M, Chaud-Netto J, Fowler HG (2004) Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Braz J Biol 64(3b):563–568. https://doi.org/10.1590/s1519-69842004000400003

    Article  PubMed  Google Scholar 

  52. Nagashima LA, Barros Júnior C, Silva CA, Fujimura AS (2009) Avaliação dos níveis de metais pesados em efluente líquido percolado do aterro sanitário de Paranavaí, Estado do Paraná, Brasil. Acta Sci Health Sci 31(1):1–8. https://doi.org/10.4025/actascihealthsci.v31i1.1154

    Article  CAS  Google Scholar 

  53. Mendoza M, Ngilangil L, Vilar D (2017) Groundwater and leachate quality assessment in Balaoan sanitary landfill in La Union, Northern Philippines. Chem Eng Trans 56:247–252. https://doi.org/10.3303/CET1756042

    Article  Google Scholar 

  54. Muniz DHF, Oliveira-Filho EC (2006) Metais pesados provenientes de rejeitos de mineração e seus efeitos sobre a saúde e o meio ambiente. Universitas: Ciências da Saúde 4:83–100

  55. Rocha CHB, Azevedo LP (2017) Avaliação da presença de metais pesados nas águas superficiais da Bacia do Córrego São Mateus, Juiz de Fora (MG), Brasil. Revista Espinhaço|UFVJM 133–44. http://www.revistaespinhaco.com/index.php/journal/article/view/86. Accessed 15 August 2019

  56. Han Z, Ma H, Shi G, He L, Wei L, Shi Q (2016) A review of groundwater contamination near municipal solid waste landfill sites in China. Sci Total Environ 569–570:1255–1264. https://doi.org/10.1016/j.scitotenv.2016.06.201

    Article  CAS  Google Scholar 

  57. Peng Y (2017) Perspectives on technology for landfill leachate treatment. Arab J Chem 10:S2567–S2574. https://doi.org/10.1016/j.arabjc.2013.09.031

    Article  CAS  Google Scholar 

  58. Li Y, Zhang H, Shao L, Zhou X, He P (2019) Impact of municipal solid waste incineration on heavy metals in the surrounding soils by multivariate analysis and lead isotope analysis. J Environ Sci. https://doi.org/10.1016/j.jes.2019.02.020

    Article  Google Scholar 

  59. Ďurža O (1999) Heavy metals contamination and magnetic susceptibility in soils around metallurgical plant. Phys Chem Earth A: Solid Earth Geodesy 24(6):541–543. https://doi.org/10.1016/s1464-1895(99)00069-1

    Article  Google Scholar 

  60. Santos-Jallath J, Castro-Rodríguez A, Huezo-Casillas J, Torres-Bustillos L (2012) Arsenic and heavy metals in native plants at tailings impoundments in Queretaro. Mexico Phys Chem Earth Parts A/B/C 37–39:10–17. https://doi.org/10.1016/j.pce.2011.12.002

    Article  Google Scholar 

  61. Davis JR (2001) ASM specialty handbook, copper and copper alloys. Ohio

  62. Buzzoni HA (1991) Galvanoplastia. 2° ed. Ícone, São Paulo

  63. Mazzoni AC, Lanzer R, Bordin J, Schäfer A, Wasum R (2012) Mosses as indicators of atmospheric metal deposition in an industrial area of southern Brazil. Acta Bot Bras 26(3):553–558. https://doi.org/10.1590/s0102-33062012000300005

    Article  Google Scholar 

  64. Sun Z, Chen J, Wang X, Lv C (2016) Heavy metal accumulation in native plants at a metallurgy waste site in rural areas of Northern China. Ecol Eng 86:60–68. https://doi.org/10.1016/j.ecoleng.2015.10.023

    Article  Google Scholar 

  65. Thornton I (1996) Sources and pathways of arsenic in the geochemical environment: health implications. Geol Soc Lond Spec Publ 113(1):153–161. https://doi.org/10.1144/GSL.SP.1996.113.01.12

    Article  CAS  Google Scholar 

  66. Nriagu JO (2002) Arsenic poisoning through the ages. In: Frankenberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker Inc, New York, pp 1–26

    Google Scholar 

  67. Ning RY (2002) Arsenic removal by reverse osmosis. Desalination 143(3):237–241. https://doi.org/10.1016/s0011-9164(02)00262-x

    Article  CAS  Google Scholar 

  68. Freire AAN, Araújo IMM, Silva JO (2016) Análise da concentração de alumínio no Rio Gramame proveniente dos efluentes da ETA-Gramame. João Pessoa/PB Revista Ambiental 2(1):88–96

    Google Scholar 

  69. Raven PH, Evert RF, Eichhorn SE (2001) Biologia vegetal. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  70. Tebaldi FLH, Silva JFC, Vasquez HM, Thiebaut JTL (2000) Composição Mineral das Pastagens das Regiões Norte e Noroeste do Estado do Rio de Janeiro. Matéria Orgânica, Alumínio e pH dos Solos. Revista Brasileira Zootecnia 29:382–386

    Article  Google Scholar 

  71. Melo Filho JF, Souza ALV, Souza LS (2007) Determinação do índice de qualidade subsuperficial em um Latossolo Amarelo Coeso dos Tabuleiros Costeiros, sob floresta natural. Rev Bras Ciênc Solo. https://doi.org/10.1590/S0100-06832007000600036

  72. Carvalho SRL, Vilas Boas GS, Fadigas FS (2011) Análise da estrutura de dados e agrupamentos de variáveis de solo relacionadas com a concentração de alguns metais pesados. Cadernos de Geociência 8(1):33–41. https://repositorio.ufba.br/ri/bitstream/ri/6861/1/FF.pdf. Accessed 20 de June 2019

  73. Ćirić J, Spirić D, Baltić T, Lazić IB, Trbović D, Parunović N, Đorđević V (2020) Honey bees and their products as indicators of environmental element deposition. Biol Trace Elem Res 199(6):2312–2319. https://doi.org/10.1007/s12011-020-02321-6

    Article  CAS  PubMed  Google Scholar 

  74. Taha EKA, Manosur HM, Shawer MB (2010) The relationship between comb age and the amounts of mineral elements in honeyand wax. J Apic Res 49(2):202–207. https://doi.org/10.3896/IBRA.1.49.2.10

    Article  CAS  Google Scholar 

  75. Formicki G, Greń A, Stawarz R, Zyśk B, Gał A (2013) Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Pol J Environ Stud 22:99–106

    CAS  Google Scholar 

  76. Di Fiore C, Nuzzo A, Torino V, De Cristofaro A, Notardonato I, Passarella S, Di Giorgi S, Avino P (2022) Honeybees as bioindicators of heavy metal pollution in urban and rural areas in the south of Italy. Atmosphere 13:624. https://doi.org/10.3390/atmos13040624

    Article  CAS  Google Scholar 

  77. Scivicco M, Nolasco A, Esposito L, Ariano A, Squillante J, Esposito F, Cirillo T, Severino L (2022) Effects of Covid-19 pandemic lockdown and environmental pollution assessment in Campania region (Italy) through the analysis of heavy metals in honeybees. Environ Pollut 307:119504. https://doi.org/10.1016/j.envpol.2022.119504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bordean DM, Ungur O, Gogoasa I, Harmanescu M (2007) Statistical evaluation of honey bees and soil samples heavy metal contents data. Bull Univ Agric Sci Vet Med Cluj-Napoca, Agriculture, 63

Download references

Acknowledgements

The authors are grateful to bee keepers for providing the samples of Melipona scutellaris and to the Nucleus of Microscopy and Microanalysis from Universidade Federal de Viçosa for the technical assistance.

Funding

This research was supported by Brazilian research agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (financial code 001), Fundação de Amparo à Pesquisa de Minas Gerais (02367–18, 00856–19), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (303467/2018–5).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, resources, investigation, and writing original draft by Sintia Emmanuelle Andrade de Santana. Methodology, resources, validation, writing, and review/editing by José Eduardo Serrão. Investigation and resources by Carlos Alfredo Lopes de Carvalho. Formal analysis and data curation by Paulo Barros de Abreu Júnior. Definition, conceptualization, validation, writing, and review/editing by Ana Maria Waldschmidt. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sintia Emmanuelle Andrade de Santana.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Santana, S.E.A., Serrão, J.E., de Carvalho, C.A.L. et al. Chemical Profile of Elements in the Stingless Bee Melipona scutellaris (Hymenoptera: Apidae: Meliponini) from Sites with Distinct Anthropogenic Activities. Biol Trace Elem Res 201, 5431–5440 (2023). https://doi.org/10.1007/s12011-023-03586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03586-3

Keywords

Navigation