Skip to main content
Log in

Therapeutic Potential of Selenium Nanoparticles on Letrozole-Induced Polycystic Ovarian Syndrome in Female Wistar Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Polycystic ovarian syndrome (PCOS) is considered the most frequent gynecological endocrine disorder that causes anovulatory infertility. The current study aimed to investigate the potential significance of selenium nanoparticles (SeNPs), an IL-1 inhibitor, in the treatment of letrozole-induced PCOS in rats that satisfied the metabolic and endocrine parameters found in PCOS patients. Letrozole (2 ppm, per orally, p.o.) was given orally to female Wistar rats for 21 days to develop PCOS. After PCOS induction, rats were given SeNPs (25 ppm/day, p.o.), SeNPs (50 ppm/day, p.o.), or metformin (2 ppm/day, p.o.) for 14 days. PCOS was associated with an increase in body weight, ovarian weight, ovarian size, and cysts, as well as an increase in blood testosterone, luteinizing hormone (LH), and insulin, glycaemia, and lipid profile levels. The SeNP administration decreased all of these variables. Furthermore, SeNPs significantly reduced letrozole-induced oxidative stress in the ovaries, muscles, and liver by decreasing elevated levels of malondialdehyde and total nitrite while raising suppressed levels of superoxide dismutase and catalase. SeNPs increased the amounts of the protective proteins Kelch-like ECH-associated protein 1 (Keap-1), nuclear factor erythroid 2–related factor 2 (Nrf2), and OH-1. It was depicted from the study that SeNPs reduce the upregulation of inflammatory cytokines that are interleukin 6 (IL-6), tumour necrosis factor α (TNF-α), and the interleukin 1 (IL-1). Our findings show that SeNPs, through their antioxidant and anti-inflammatory characteristics, alleviate letrozole-induced PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kyritsi EM, Dimitriadis GK, Kyrou I, Kaltsas G, Randeva HS (2017) PCOS remains a diagnosis of exclusion: a concise review of key endocrinopathies to exclude. Clin Endocrinol 86(1):1–6. https://doi.org/10.1111/cen.13245

    Article  Google Scholar 

  2. Patel S (2018) Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J Steroid Biochem Mol Biol 182:27–36. https://doi.org/10.1016/j.jsbmb.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  3. Dogan H, Caltekin MD (2021) Does polycystic ovary syndrome with phenotype D affect the cardiovascular endurance, core endurance, body awareness, and the quality of life? A prospective, controlled study/Fenotip D’li polikistik over sendromu kardiyovaskuler enduransi, kor enduransi, vucut farkindaligini ve yasam kalitesini etkiler mi? Prospektif, kontrollu calisma, Turkish J Obstet Gynecol 18(3):203–212. https://doi.org/10.4274/tjod.galenos.2021.72547

    Article  Google Scholar 

  4. Badawy A, Elnashar A (2011) Treatment options for polycystic ovary syndrome. Int J Women’s Health 3:25. https://doi.org/10.2147/IJWH.S11304

    Article  Google Scholar 

  5. Lashen H (2010) Role of metformin in the management of polycystic ovary syndrome. Therapeutic Adv Endocrinol Metab 1(3):117–128. https://doi.org/10.1177/2042018810380215

    Article  CAS  Google Scholar 

  6. Deligeoroglou E, Vrachnis N, Athanasopoulos N, Iliodromiti Z, Sifakis S, Iliodromiti S, Siristatidis C, Creatsas G (2012) Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecol Endocrinol 28(12):974–978. https://doi.org/10.3109/09513590.2012.683082

    Article  CAS  PubMed  Google Scholar 

  7. Zangeneh FZ, Naghizadeh MM, Masoumi M (2017) Polycystic ovary syndrome and circulating inflammatory markers. Int J Reprod BioMed 15(6):375

    Article  CAS  Google Scholar 

  8. Yang Y, Qiao J, Li M (2012) Correlation between interleukin-1 and the obesity of polycystic ovary syndrome. Zhonghua Fu Chan Ke Za Zhi 47(1):9–13

    PubMed  Google Scholar 

  9. Xia Y-H, Yao L, Zhang Z-X (2013) Correlation between IL-1β, IL-1Ra gene polymorphism and occurrence of polycystic ovary syndrome infertility. Asian Pac J Trop Med 6(3):232–236. https://doi.org/10.1016/S1995-7645(13)60030-9

    Article  CAS  PubMed  Google Scholar 

  10. Rayman MP (2012) Selenium and human health. The Lancet 379(9822):1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  Google Scholar 

  11. Shetty SP, Shah R, Copeland PR (2014) Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P. J Biol Chem 289(36):25317–25326. https://doi.org/10.1074/jbc.M114.590430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guisbiers G, Lara HH, Mendoza-Cruz R, Naranjo G, Vincent BA, Peralta XG, Nash KL (2017) Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids, Nanomedicine: Nanotechnology. Biol Med 13(3):1095–1103. https://doi.org/10.1016/j.nano.2016.10.011

    Article  CAS  Google Scholar 

  13. Tobe R, Mihara H (2018) Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis, Biochimica et Biophysica Acta (BBA)-General Subjects. Biochim Biophys Acta Gen Subj. 1862(11):2433–2440. https://doi.org/10.1016/j.bbagen.2018.05.023

    Article  CAS  PubMed  Google Scholar 

  14. Kudva AK, Shay AE, Prabhu KS (2015) Selenium and inflammatory bowel disease, American Journal of Physiology-Gastrointestinal and Liver Physiology. Am J Physiol Gastrointestinal and Liver Physiol. 309(2):G71–G77. https://doi.org/10.1152/ajpgi.00379.2014

    Article  CAS  Google Scholar 

  15. Chen W, Li Y, Yang S, Yue L, Jiang Q, Xia W (2015) Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles. Carbohyd Polym 132:574–581. https://doi.org/10.1016/j.carbpol.2015.06.064

    Article  CAS  Google Scholar 

  16. Tekade RK, Maheshwari R, Soni N, Tekade M, Chougule MB (2017) Nanotechnology for the development of nanomedicine. Elsevier, Nanotechnology-based approaches for targeting and delivery of drugs and genes, pp 3–61

    Google Scholar 

  17. Bagchi M, Moriyama H, Shahidi F (2012) Bio-nanotechnology: a revolution in food, biomedical and health sciences

  18. Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16(7–8):262–271. https://doi.org/10.1016/j.mattod.2013.07.004

    Article  CAS  Google Scholar 

  19. Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: summary of international study. J Nanopart Res 13(3):897–919. https://doi.org/10.1007/s11051-011-0275-5

    Article  Google Scholar 

  20. Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812. https://doi.org/10.1016/j.biopha.2018.12.146

    Article  CAS  PubMed  Google Scholar 

  21. Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 56(1):7–15. https://doi.org/10.1042/BA20100042

    Article  CAS  PubMed  Google Scholar 

  22. Vekariya KK, Kaur J, Tikoo K (2012) ERα signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer, Nanomedicine: Nanotechnology. Biol Med 8(7):1125–1132. https://doi.org/10.1016/j.nano.2011.12.003

    Article  CAS  Google Scholar 

  23. Luesakul U, Puthong S, Neamati N, Muangsin N (2018) pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells. Carbohyd Polym 181:841–850. https://doi.org/10.1016/j.carbpol.2017.11.068

    Article  CAS  Google Scholar 

  24. Menon S, Ks SD, Santhiya R, Rajeshkumar S, Kumar V (2018) Selenium nanoparticles: A potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf, B 170:280–292. https://doi.org/10.1016/j.colsurfb.2018.06.006

    Article  CAS  Google Scholar 

  25. Bai K, Hong B, Huang W, He J (2020) Selenium-nanoparticles-loaded chitosan/chitooligosaccharide microparticles and their antioxidant potential: a chemical and in vivo investigation. Pharmaceutics 12(1):43. https://doi.org/10.3390/pharmaceutics12010043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vieira AP, Stein EM, Andreguetti DX, Cebrián-Torrejón G, Doménech-Carbó A, Colepicolo P, Ferreira AMD (2017) “ Sweet Chemistry”: a Green Way for Obtaining Selenium Nanoparticles Active against Cancer Cells. J Braz Chem Soc 28:2021–2027. https://doi.org/10.21577/0103-5053.20170025

    Article  CAS  Google Scholar 

  27. Reeves P, Nielsen F, Jr Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951. https://doi.org/10.1093/jn/123.11.1939

    Article  CAS  PubMed  Google Scholar 

  28. Kakkar P, Das B, Viswanathan P (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys. 21(2):130–2

  29. Fossati P, Prencipe L, Berti G (1980) Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26(2):227–231. https://doi.org/10.1016/0003-2697(78)90342-1

    Article  CAS  PubMed  Google Scholar 

  30. Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86(1):271–278. https://doi.org/10.1016/0003-2697(78)90342-1

    Article  CAS  PubMed  Google Scholar 

  31. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126(1):131–138. https://doi.org/10.1016/0003-2697(82)90118-X

    Article  CAS  PubMed  Google Scholar 

  32. Zhao M, Luo T, Zhao Z, Rong H, Zhao G, Lei L (2021) Food Chemistry of selenium and controversial roles of selenium in affecting blood cholesterol concentrations. J Agric Food Chem 69(17):4935–4945. https://doi.org/10.1021/acs.jafc.1c00784

    Article  CAS  PubMed  Google Scholar 

  33. Li Y, Chen C, Ma Y, Xiao J, Luo G, Li Y, Wu D (2019) Multi-system reproductive metabolic disorder: significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci 228:167–175. https://doi.org/10.1016/j.lfs.2019.04.046

    Article  CAS  PubMed  Google Scholar 

  34. Reddy PS, Begum N, Mutha S, Bakshi V (2016) Beneficial effect of curcumin in letrozole induced polycystic ovary syndrome. Asian Pac J Reprod 5(2):116–122. https://doi.org/10.1016/j.apjr.2016.01.006

    Article  Google Scholar 

  35. Rajan RK, Balaji B (2017) Soy isoflavones exert beneficial effects on letrozole-induced rat polycystic ovary syndrome (PCOS) model through anti-androgenic mechanism. Pharm Biol 55(1):242–251. https://doi.org/10.1080/13880209.2016.1258425

    Article  CAS  PubMed  Google Scholar 

  36. Jahan S, Abid A, Khalid S, Afsar T, Shaheen G, Almajwal A, Razak S (2018) Therapeutic potentials of Quercetin in management of polycystic ovarian syndrome using Letrozole induced rat model: a histological and a biochemical study. J Ovarian Res 11(1):1–10. https://doi.org/10.1186/s13048-018-0400-5

    Article  CAS  Google Scholar 

  37. Krishnan A, Muthusami S (2017) Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol 232(2):R99–R113. https://doi.org/10.1530/JOE-16-0405

    Article  CAS  PubMed  Google Scholar 

  38. Lee YH, Yang H, Lee SR, Kwon SW, Hong E-J, Lee HW (2018) Welsh onion root (Allium fistulosum) restores ovarian functions from letrozole induced-polycystic ovary syndrome. Nutrients 10(10):1430. https://doi.org/10.3390/nu10101430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jp ZHU, Yc TENG, Zhou J, Lu W, TAO MF, JIA WP (2013) Increased mean glucose levels in patients with polycystic ovary syndrome and hyperandrogenemia as determined by continuous glucose monitoring. Acta obstetricia et gynecologica Scandinavica 92(2):165–171. https://doi.org/10.1111/aogs.12031

    Article  CAS  Google Scholar 

  40. Zuo T, Zhu M, Xu W (2016) Roles of oxidative stress in polycystic ovary syndrome and cancers, Oxidative medicine and cellular longevity (2016). https://doi.org/10.1155/2016/8589318

  41. Yang H, Lee SY, Lee SR, Pyun B-J, Kim HJ, Lee YH, Kwon SW, Suh DH, Lee CH, Hong E-J (2018) Therapeutic effect of Ecklonia cava extract in letrozole-induced polycystic ovary syndrome rats. Front Pharmacol 9:1325. https://doi.org/10.3389/fphar.2018.01325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salvetti NR, Gimeno EJ, Canal AM, Lorente JA, Ortega HH (2017) Histochemical study of the extracellular matrix components in the follicular wall of induced polycystic ovaries. Braz J morphol Sci 20(2):93–100

  43. Abraham Gnanadass S, DivakarPrabhu Y, ValsalaGopalakrishnan A (2021) Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): an update. Arch Gynecol Obstet 303(3):631–643. https://doi.org/10.1007/s00404-020-05951-2

    Article  CAS  PubMed  Google Scholar 

  44. Wang T, He C (2018) Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev 44:38–50. https://doi.org/10.1016/j.cytogfr.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  45. Meier CA, Bobbioni E, Gabay C, Assimacopoulos-Jeannet FO, Golay A, JM, Dayer, (2002) IL-1 receptor antagonist serum levels are increased in human obesity: a possible link to the resistance to leptin? J Clin Endocrinol Metab 87(3):1184–1188. https://doi.org/10.1210/jcem.87.3.8351

    Article  CAS  PubMed  Google Scholar 

  46. Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang J-Y, Khan AR, Aubert G, Candelaria K, Thomas S, Shin D-J (2013) Imbalance between neutrophil elastase and its inhibitor α1-antitrypsin in obesity alters insulin sensitivity, inflammation, and energy expenditure. Cell Metab 17(4):534–548. https://doi.org/10.1016/j.cmet.2013.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun J, Jin C, Wu H, Zhao J, Cui Y, Liu H, Wu L, Shi Y, Zhu B (2013) Effects of electro-acupuncture on ovarian P450arom, P450c17α and mRNA expression induced by letrozole in PCOS rats. PLoS One 8(11):e79382. https://doi.org/10.1371/journal.pone.0079382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khmil M, Khmil S, Marushchak M (2020) Hormone imbalance in women with infertility caused by polycystic ovary syndrome: is there a connection with body mass index? Open Access Macedonian J Med Sci 8(B):731–737. https://doi.org/10.3889/oamjms.2020.4569

    Article  Google Scholar 

  49. Jahan S, Munir F, Razak S, Mehboob A, Ain QU, Ullah H, Afsar T, Shaheen G, Almajwal A (2016) Ameliorative effects of rutin against metabolic, biochemical and hormonal disturbances in polycystic ovary syndrome in rats. J Ovarian Res 9(1):1–9. https://doi.org/10.1186/s13048-016-0295-y

    Article  CAS  Google Scholar 

  50. Silva MS, Giacobini P (2021) New insights into anti-Müllerian hormone role in the hypothalamic–pituitary–gonadal axis and neuroendocrine development. Cell Mol Life Sci 78(1):1–16. https://doi.org/10.1007/s00018-020-03576-x

    Article  CAS  PubMed  Google Scholar 

  51. Johnson N (2011) Metformin is a reasonable first-line treatment option for non-obese women with infertility related to anovulatory polycystic ovary syndrome–a meta-analysis of randomised trials. Aust N Z J Obstet Gynaecol 51(2):125–129. https://doi.org/10.1111/j.1479-828X.2010.01274.x

    Article  PubMed  Google Scholar 

  52. Desai NR, Shrank WH, Fischer MA, Avorn J, Liberman JN, Schneeweiss S, Pakes J, Brennan TA, Choudhry NK (2012) Patterns of medication initiation in newly diagnosed diabetes mellitus: quality and cost implications. Am J Med 125(3):302.e1-302. https://doi.org/10.1016/j.amjmed.2011.07.033

    Article  PubMed  Google Scholar 

  53. Chen Y, Wu W, Zhou H, Liu X, Li S, Guo Y, Li Y, Wang Y, Yuan J (2022) Selenium nanoparticles improved intestinal health through modulation of the NLRP3 signaling pathway, Frontiers in Nutrition 9. https://doi.org/10.3389/fnut.2022.907386

  54. Borzan V, Lerchbaum E, Missbrenner C, Heijboer AC, Goschnik M, Trummer C, Theiler-Schwetz V, Haudum C, Gumpold R, Schweighofer N (2021) Risk of insulin resistance and metabolic syndrome in women with hyperandrogenemia: a comparison between PCOS phenotypes and beyond. J Clin Med 10(4):829. https://doi.org/10.3390/jcm10040829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hajmrle C (2016) Pleiotropic actions of IL-1 signaling on β-cell function and glucose homeostasis. Dissertation, University of Alberta

  56. Al-Quraishy S, Dkhil MA, Moneim AEA (2015) Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int J Nanomed 10:6741. https://doi.org/10.2147/IJN.S91377

    Article  CAS  Google Scholar 

  57. Xiao S, Mao L, Xiao J, Wu Y, Liu H (2021) Selenium nanoparticles inhibit the formation of atherosclerosis in apolipoprotein E deficient mice by alleviating hyperlipidemia and oxidative stress. Eur J Pharmacol 902:174120. https://doi.org/10.1016/j.ejphar.2021.174120

    Article  CAS  PubMed  Google Scholar 

  58. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S (2012) The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 10(1):1–31. https://doi.org/10.1186/1477-7827-10-49

    Article  Google Scholar 

  59. Virshette S, Patil M, Shaikh JR (2020) A review on pharmacological properties and phytoconstituents of indigenous carminative agents. J Pharmacogn Phytochem 9(3):142–145

    CAS  Google Scholar 

  60. Fitzpatrick AM, Brown LAS, Holguin F, Teague WG (2009) SAR Program, NIo Health, Levels of nitric oxide oxidation products are increased in the epithelial lining fluid of children with persistent asthma. J Allergy Clin Immunol 124(5):990–996. https://doi.org/10.1016/j.jaci.2009.08.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhai X, Zhang C, Zhao G, Stoll S, Ren F, Leng X (2017) Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J nanobiotechnol 15(1):1–12. https://doi.org/10.1186/s12951-016-0243-4

    Article  CAS  Google Scholar 

  62. Sergi D, Naumovski N, Heilbronn LK, Abeywardena M, O’Callaghan N, Lionetti L, Luscombe-Marsh N (2019) Mitochondrial (dys) function and insulin resistance: from pathophysiological molecular mechanisms to the impact of diet. Front Physiol 10:532. https://doi.org/10.3389/fphys.2019.00532

    Article  PubMed  PubMed Central  Google Scholar 

  63. Al-Brakati A, Alsharif KF, Alzahrani KJ, Kabrah S, Al-Amer O, Oyouni AA, Habotta OA, Lokman MS, Bauomy AA, Kassab RB (2021) Using green biosynthesized lycopene-coated selenium nanoparticles to rescue renal damage in glycerol-induced acute kidney injury in rats. Int J Nanomed 16:4335. https://doi.org/10.2147/IJN.S306186

    Article  Google Scholar 

  64. Khalil HM, Azouz RA, Hozyen HF, Aljuaydi SH, AbuBakr HO, Emam SR, Al-Mokaddem AK (2022) Selenium nanoparticles impart robust neuroprotection against deltamethrin-induced neurotoxicity in male rats by reversing behavioral alterations, oxidative damage, apoptosis, and neuronal loss. Neurotoxicol 91:329–339. https://doi.org/10.1016/j.neuro.2022.06.006

    Article  CAS  Google Scholar 

  65. Ghowsi M, Khazali H, Sisakhtnezhad S (2018) The effect of resveratrol on oxidative stress in the liver and serum of a rat model of polycystic ovary syndrome: an experimental study. Int J Reprod Biomed 16(3):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bellezza I, Giambanco I, Minelli A (1865) R Donato (2018) Nrf2-Keap1 signaling in oxidative and reductive stress, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. Biochim Biophys Acta Mol Cell Res. 5:721–733. https://doi.org/10.1016/j.bbamcr.2018.02.010

    Article  CAS  Google Scholar 

  67. Baird L, Yamamoto M (2020) The molecular mechanisms regulating the KEAP1-NRF2 pathway. Mol Cell Biol 40(13):e00099-e120. https://doi.org/10.1128/MCB.00099-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ryter SW (2019) Heme oxygenase-1/carbon monoxide as modulators of autophagy and inflammation. Arch Biochem biophys 678:108186. https://doi.org/10.1016/j.abb.2019.108186

    Article  CAS  PubMed  Google Scholar 

  69. Wang Y, Li N, Zeng Z, Tang L, Zhao S, Zhou F, Zhou L, Xia W, Zhu C, Rao M (2021) Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Mol Human Reprod 27(2):081. https://doi.org/10.1093/molehr/gaaa081

    Article  CAS  Google Scholar 

  70. Xu C, Qiao L, Ma L, Guo Y, Dou X, Yan S, Zhang B, Roman A (2019) Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate intestinal epithelial barrier dysfunction caused by oxidative stress via Nrf2 signaling-mediated mitochondrial pathway. Int J Nanomed 14:4491. https://doi.org/10.2147/IJN.S199193

    Article  CAS  Google Scholar 

  71. Ajmal N, Khan SZ, Shaikh R (2019) Polycystic ovary syndrome (PCOS) and genetic predisposition: a review article, European journal of obstetrics & gynecology and reproductive biology: X 3 100060 https://doi.org/10.1016/j.eurox.2019.100060

  72. Diamanti-Kandarakis E, Dunaif A (2012) Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev 33(6):981–1030. https://doi.org/10.1210/er.2011-1034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Present article is extracted from Ph.D. dissertation research work of first author Miss. Maisra Azhar Butt. Strong acknowledgment is for International Islamic University Islamabad, Pakistan, and Shifa Tameer-e-Millat University Islamabad, Pakistan, who provided facilities for conduct of this research.

Author information

Authors and Affiliations

Authors

Contributions

S. no

Contributions

Names of authors

 1.

Study conception or design

Maisra Azhar Butt, Mubin Mustafa Kiyani

 2.

Data processing, collection, perform experiment

Hafiz Muhammad Shafique, Urwah Shamas

 3.

Analysis and interpretation of results

Anum Munir, Mahjabeen Mustafa

 4.

Critical revision or editing of the article

Nurain Baig Moghul, Sobia Tabassum

 5.

Final approval of the version to be published

Maisra Azhar Butt, Hafiz Muhammad Shafique, Urwah Shamas, Mahjabeen Mustafa, Nurain Baig Moghul, Anum Munir, Sobia Tabassum, and Mubin Mustafa Kiyani

Corresponding author

Correspondence to Mubin Mustafa Kiyani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

Ethical approval letter has been taken from IRB of International Islamic University Islamabad, Pakistan.

Consent for Publication

All authors are mutually agreed for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Selenium nanoparticles (SeNPs) were prepared, characterized, and administered to letrozole-induced PCOS rats.

Different biochemical tests were performed to evaluate the effect of SeNPs.

SeNPs increased the concentration of antioxidant enzymes and reduced the concentration of cholesterol and inflammatory proteins.

SeNPs decreased the antioxidant stress produced by the inflammatory markers IL-1 and IL-6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, M.A., Shafique, H.M., Mustafa, M. et al. Therapeutic Potential of Selenium Nanoparticles on Letrozole-Induced Polycystic Ovarian Syndrome in Female Wistar Rats. Biol Trace Elem Res 201, 5213–5229 (2023). https://doi.org/10.1007/s12011-023-03579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03579-2

Keywords

Navigation