Skip to main content

Advertisement

Log in

Glutathione Might Attenuate Arsenic-Induced Liver Injury by Modulating the Foxa2-XIAP Axis to Reduce Oxidative Stress and Mitochondrial Apoptosis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Arsenic (AS) is a metalloid element that widely exists and can cause different degrees of liver damage. The molecular mechanism of arsenic-induced liver injury has yet to be fully elucidated. Clinically, glutathione (GSH) is often used as an antidote for heavy metal poisoning and hepatoprotective drugs. However, the hepatoprotective effect of glutathione remains unknown in arsenic-induced liver injury. The regulatory relationship between Foxa2 and XIAP may play an important role in mitochondrial survival and death. Therefore, we took Foxa2-XIAP as the axis to explore the protective mechanism of GSH. In this study, we first established a mouse model of chronic arsenic exposure and examined liver function as reflected by quantitative parameters such as aspartate aminotransferase and alanine aminotransferase. Also, redox parameters in the liver were measured, including malondialdehyde, superoxide dismutase, 8-hydroxy-2′-deoxyguanosin, and glutathione peroxidase. RT-qPCR and western-blotting were used to detect the levels of related genes and proteins, such as Foxa2, XIAP, Smac, Bax, Bcl2, Caspase9, and Caspase3. Subsequently, GSH was administered at the same time as high arsenic exposure, and changes in the above parameters were observed. After a comprehensive analysis of the above results, we demonstrate that GSH treatment alleviates arsenic-induced oxidative stress and inhibits the mitochondrial pathway of apoptosis, which can be regulated through the Foxa2 and XIAP axis. The present study would be helpful in elucidating the molecular mechanism of arsenic-induced liver injury and identifying a new potential therapeutic target. And we also provided new theoretical support for glutathione in the treatment of liver damage caused by arsenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data contained in the paper is available.

References

  1. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  PubMed  Google Scholar 

  2. Podgorski J, Berg M (2020) Global threat of arsenic in groundwater. Science 368(6493):845–850. https://doi.org/10.1126/science.aba1510

    Article  CAS  PubMed  Google Scholar 

  3. George CM, Sima L, Arias MH et al (2014) Arsenic exposure in drinking water: an unrecognized health threat in Peru. Bull World Health Organ 92(8):565–572. https://doi.org/10.2471/BLT.13.128496

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang W, Gao Y, Yu G et al (2021) Progress in the prevention and control of water-borne arsenicosis in China. Int J Environ Health Res 31(5):548–557. https://doi.org/10.1080/09603123.2019.1674255

    Article  CAS  PubMed  Google Scholar 

  5. Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Arsenic in groundwater of West Bengal, India: a review of human health risks and assessment of possible intervention options. Sci Total Environ 612:148–169. https://doi.org/10.1016/j.scitotenv.2017.08.216

    Article  CAS  PubMed  Google Scholar 

  6. Rahaman MS, Rahman MM, Mise N et al (2021) Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environ Pollut 289:117940. https://doi.org/10.1016/j.envpol.2021.117940

    Article  CAS  PubMed  Google Scholar 

  7. Torres-Avila M, Leal-Galicia P, Sánchez-Peña LC, Del Razo LM, Gonsebatt ME (2010) Arsenite induces aquaglyceroporin 9 expression in murine livers. Environ Res 110(5):443–447. https://doi.org/10.1016/j.envres.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  8. Mazumder DN (2005) Effect of chronic intake of arsenic-contaminated water on liver. Toxicol Appl Pharmacol 206(2):169–175. https://doi.org/10.1016/j.taap.2004.08.025

    Article  CAS  PubMed  Google Scholar 

  9. Frediani JK, Naioti EA, Vos MB, Figueroa J, Marsit CJ, Welsh JA (2018) Arsenic exposure and risk of nonalcoholic fatty liver disease (NAFLD) among U.S. adolescents and adults: an association modified by race/ethnicity, NHANES 2005–2014. Environ Health 17(1):6. Published 2018 Jan 15. https://doi.org/10.1186/s12940-017-0350-1

  10. Jomova K, Jenisova Z, Feszterova M et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107. https://doi.org/10.1002/jat.1649

    Article  CAS  PubMed  Google Scholar 

  11. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87(7):1157–1180. https://doi.org/10.1007/s00204-013-1034-4

    Article  CAS  PubMed  Google Scholar 

  12. Moussata D, Amara S, Siddeek B et al (2012) XIAP as a radioresistance factor and prognostic marker for radiotherapy in human rectal adenocarcinoma. Am J Pathol 181(4):1271–1278. https://doi.org/10.1016/j.ajpath.2012.06.029

    Article  CAS  PubMed  Google Scholar 

  13. Wu Y, Lu S, Huang X et al (2022) Targeting cIAPs attenuates CCl4-induced liver fibrosis by increasing MMP9 expression derived from neutrophils. Life Sci 289:120235. https://doi.org/10.1016/j.lfs.2021.120235

    Article  CAS  PubMed  Google Scholar 

  14. Sharma S, Kaufmann T, Biswas S (2017) Impact of inhibitor of apoptosis proteins on immune modulation and inflammation. Immunol Cell Biol 95(3):236–243. https://doi.org/10.1038/icb.2016.101

    Article  CAS  PubMed  Google Scholar 

  15. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96(2):245–254. https://doi.org/10.1016/s0092-8674(00)80564-4

    Article  CAS  PubMed  Google Scholar 

  16. Wu G, Chai J, Suber TL et al (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408(6815):1008–1012. https://doi.org/10.1038/35050012

    Article  CAS  PubMed  Google Scholar 

  17. Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M (2004) Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature 432(7020):1027–1032. https://doi.org/10.1038/nature03047

    Article  CAS  PubMed  Google Scholar 

  18. Wang K, Brems JJ, Gamelli RL, Holterman AX (2013) Foxa2 may modulate hepatic apoptosis through the cIAP1 pathway. Cell Signal 25(4):867–874. https://doi.org/10.1016/j.cellsig.2012.12.012

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Dong H, Thompson DC, Shertzer HG, Nebert DW, Vasiliou V (2013) Glutathione defense mechanism in liver injury: insights from animal models. Food Chem Toxicol 60:38–44. https://doi.org/10.1016/j.fct.2013.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Short JD, Downs K, Tavakoli S, Asmis R (2016) Protein thiol redox signaling in monocytes and macrophages. Antioxid Redox Signal 25(15):816–835. https://doi.org/10.1089/ars.2016.6697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. IARC (International Agency for Research on Cancer) (2004) Monographs on evaluation of carcinogenic risk to humans. Some Drinking Water Disinfectants Contam Incl Arsenic 84:269–477

    Google Scholar 

  22. Islam K, Haque A, Karim R et al (2011) Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh. Environ Health 10:64. https://doi.org/10.1186/1476-069X-10-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dong Z (2002) The molecular mechanisms of arsenic-induced cell transformation and apoptosis. Environ Health Perspect 110(Suppl 5):757–759. https://doi.org/10.1289/ehp.02110s5757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang C, Zhang W, He Y et al (2021) Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects. Nat Nanotechnol 16(12):1413–1423. https://doi.org/10.1038/s41565-021-00980-7

    Article  CAS  PubMed  Google Scholar 

  25. Zhao Y, Yuan B, Onda K, et al (2018) Anticancer efficacies of arsenic disulfide through apoptosis induction, cell cycle arrest, and pro-survival signal inhibition in human breast cancer cells. Am J Cancer Res.8(3):366–386. Published 2018 Mar 1

  26. Lengfelder E, Hofmann WK, Nowak D (2012) Impact of arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia 26(3):433–442. https://doi.org/10.1038/leu.2011.245

    Article  CAS  PubMed  Google Scholar 

  27. Lo-Coco F, Avvisati G, Vignetti M et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369(2):111–121. https://doi.org/10.1056/NEJMoa1300874

    Article  CAS  PubMed  Google Scholar 

  28. Huang H, Wu Q, Guo X et al (2021) O-GlcNAcylation promotes the migratory ability of hepatocellular carcinoma cells via regulating FOXA2 stability and transcriptional activity. J Cell Physiol 236(11):7491–7503. https://doi.org/10.1002/jcp.30385

    Article  CAS  PubMed  Google Scholar 

  29. Xu J, Hua X, Yang R et al (2019) XIAP Interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion. Oncogenesis 8(12):71. https://doi.org/10.1038/s41389-019-0181-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Foster FM, Owens TW, Tanianis-Hughes J et al (2009) Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res 11(3):R41. https://doi.org/10.1186/bcr2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dubrez-Daloz L, Dupoux A, Cartier J (2008) IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle 7(8):1036–1046. https://doi.org/10.4161/cc.7.8.5783

    Article  CAS  PubMed  Google Scholar 

  32. Abbas R, Larisch S (2020) Targeting XIAP for promoting cancer cell death-the story of ARTS and SMAC. Cells. 9(3):663. https://doi.org/10.3390/cells9030663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dominko K, Đikić D (2018) Glutathionylation: a regulatory role of glutathione in physiological processes. Arh Hig Rada Toksikol 69(1):1–24. https://doi.org/10.2478/aiht-2018-69-2966

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (grant no. 81773367).

Author information

Authors and Affiliations

Authors

Contributions

Hua Zhang, Baiming Jin, and Kewei Wang developed the hypothesis and study design. All authors contributed to the study concept, analysis, and interpretation of the data. All authors approved the final manuscript for submission.

Corresponding author

Correspondence to Kewei Wang.

Ethics declarations

Ethics Approval and Consent to Participate Animal Ethics

All procedures were approved by the Animal Use Ethics Committee of the Chinese Center for Disease Control and Prevention, Harbin Medical University (approval ID: hrbmuecdc20170306).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Jin, B., Liu, L. et al. Glutathione Might Attenuate Arsenic-Induced Liver Injury by Modulating the Foxa2-XIAP Axis to Reduce Oxidative Stress and Mitochondrial Apoptosis. Biol Trace Elem Res 201, 5201–5212 (2023). https://doi.org/10.1007/s12011-023-03577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03577-4

Keywords

Navigation