Skip to main content
Log in

In Vivo Toxicity of Oral Administrated Nano-SiO2: Can Food Additives Increase Apoptosis?

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Nano-silicon dioxide (nano-SiO2) has a great deal of application in food packaging, as antibacterial food additives, and in drug delivery systems but this nanoparticle, despite its wide range of utilizations, can generate destructive effects on organs such as the liver, kidney, and lungs. This study is aimed at investigating the toxicological effects of nano-SiO2 through apoptotic factors. For this purpose, 40 female rats in 4 groups (n = 10) received 300, 600, and 900 mg/kg/day of nano-SiO2 at 20–30 nm size orally for 20 days. Relative expression of Caspase3, Bcl-2, and BAX genes in kidney and liver was evaluated in real time-PCR. The results indicated the overexpression of BAX and Caspase3 genes in the liver and kidney in groups receiving 300 and 900 mg/kg/day of nano-SiO2. Bcl-2 gene was up-regulated in the liver and kidney at 600 mg/kg/day compared to the control group. Overexpression of the Bcl-2 gene in the kidney in 300 and 900 mg/kg/day recipient groups was observed (P ≤ 0.05). Histopathological examination demonstrated 600 mg/kg/day hyperemia in the kidney and lungs. In addition, at 900 mg/kg/day were distinguished scattered necrosis and hyperemia in the liver. The rate of epithelialization in the lungs increased. The nano-SiO2 at 300 and 900 mg/kg/day can induce more cytotoxicity in the liver and lung after oral exposure. However, cytotoxicity of nano-SiO2 at 600 mg/kg/day in the kidney and lung was noticed. Hence, the using of nano-SiO2 as an additive and food packaging should be more considered due to their deleterious effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:80. https://doi.org/10.1126/science.1114397

  2. Oberdörster G, Maynard A, Donaldson K, et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. https://doi.org/10.1186/1743-8977-2-8

  3. Deylam M, Alizadeh E, Sarikhani M et al (2021) Zinc oxide nanoparticles promote the aging process in a size-dependent manner. J Mater Sci Mater Med 32:128. https://doi.org/10.1007/s10856-021-06602-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manizheh Sarikhani, Sevil Vaghefi Moghaddam, Masoumeh Firouzamandi, Marzie Hejazy, Bahareh Rahimi HM& EA (2022) Harnessing rat derived model cells to assess the toxicity of TiO2 nanoparticles. J Mater Sci Mater Med 33(5):41. https://doi.org/10.1007/s10856-022-06662-7

  5. Ray PC, Yu H, Fu PP (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Heal Part C Environ Carcinog Ecotoxicol Rev 27:1–35

    CAS  Google Scholar 

  6. Sakamoto Y, Nakae D, Fukumori N, et al. (2009) Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 34. https://doi.org/10.2131/jts.34.65

  7. Larsen ST, Roursgaard M, Jensen KA, Nielsen GD (2010) Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol 106:114–117. https://doi.org/10.1111/j.1742-7843.2009.00473.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pourhamzeh M, Gholami Mahmoudian Z, Saidijam M, et al (2016) The effect of silver nanoparticles on the biochemical parameters of liver function in serum, and the expression of caspase-3 in the liver tissues of male rats. Avicenna J Med Biochem 4. https://doi.org/10.17795/ajmb-35557

  9. Shehata AM, Salem FMS, El-Saied EM et al (2022) Evaluation of the ameliorative effect of zinc nanoparticles against silver nanoparticle–induced toxicity in liver and kidney of rats. Biol Trace Elem Res 200:1201–1211. https://doi.org/10.1007/s12011-021-02713-2

    Article  CAS  PubMed  Google Scholar 

  10. Shukla RK, Kumar A, Gurbani D et al (2013) TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology 7:48–60. https://doi.org/10.3109/17435390.2011.629747

    Article  CAS  PubMed  Google Scholar 

  11. Boguszewska-Czubara A, Pasternak K (2011) Silicon in medicine and therapy. J Elem 16. https://doi.org/10.5601/jelem.2011.16.3.13

  12. Birchall JD, Bellia JP, Roberts NB (1996) On the mechanisms underlying the essentiality of silicon-interactions with aluminium and copper. Coord Chem Rev 149. https://doi.org/10.1016/s0010-8545(96)90028-4

  13. Perry CC, Keeling-Tucker T (1998) Aspects of the bioinorganic chemistry of silicon in conjunction with the biometals calcium, iron and aluminium. J Inorg Biochem 69(3):181–91. https://doi.org/10.1016/s0162-0134(97)10017-4

  14. Turner KK, Nielsen BD, O’Connor-Robison CI et al (2008) Tissue response to a supplement high in aluminum and silicon. Biol Trace Elem Res 121:134–148. https://doi.org/10.1007/s12011-007-8039-x

    Article  CAS  PubMed  Google Scholar 

  15. Jugdaohsingh R, Anderson SHC, Tucker KL et al (2002) Dietary silicon intake and absorption. Am J Clin Nutr 75:887–893. https://doi.org/10.1093/ajcn/75.5.887

    Article  CAS  PubMed  Google Scholar 

  16. Sripanyakorn S, Jugdaohsingh R, Thompson RPH, Powell JJ (2005) Dietary silicon and bone health. Nutr Bull 30(3): 222–230. https://doi.org/10.1111/j.1467-3010.2005.00507.x

  17. Carlisle EM (1980) Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J Nutr 110. https://doi.org/10.1093/jn/110.5.1046

  18. Popplewell JF, King SJ, Day JP, et al (1998) Kinetics of uptake and elimination of silicic acid by a human subject: a novel application of 32Si and accelerator mass spectrometry. J Inorg Biochem 69(3):177–80. https://doi.org/10.1016/s0162-0134(97)10016-2

  19. Jugdaohsingh R, Calomme MR, Robinson K et al (2008) Increased longitudinal growth in rats on a silicon-depleted diet. Bone 43:596–606. https://doi.org/10.1016/j.bone.2008.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hodson MJ, Evans DE (2020) Aluminium-silicon interactions in higher plants: An update. J Exp Bot 71:6719–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50. https://doi.org/10.1080/00380768.2004.10408447

  22. Liang Y, Chen Q, Liu Q et al (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164. https://doi.org/10.1078/0176-1617-01065

    Article  CAS  PubMed  Google Scholar 

  23. Liang Y, Si J, Römheld V (2005) Silicon uptake and transport is an active process in Cucumis sativus. New Phytol 167:797–804. https://doi.org/10.1111/j.1469-8137.2005.01463.x

    Article  CAS  PubMed  Google Scholar 

  24. Lin W, Huang YW, Zhou XD, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259. https://doi.org/10.1016/j.taap.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  25. Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. https://doi.org/10.3762/bjnano.6.181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Eom H-J, Choi J (2011) SiO<sub>2</sub> Nanoparticles induced cytotoxicity by oxidative stress in human bronchial epithelial cell, Beas-2B. Environ Health Toxicol 26:e2011013. https://doi.org/10.5620/eht.2011.26.e2011013

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang Y, Du X, Wang Q et al (2019) Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int J Mol Med 44:903–912. https://doi.org/10.3892/ijmm.2019.4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fubini B, Hubbard A (2003) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34:1507–1516

    Article  CAS  PubMed  Google Scholar 

  29. Ye Y, Liu J, Xu J et al (2010) Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol Vitr 24:751–758. https://doi.org/10.1016/j.tiv.2010.01.001

    Article  CAS  Google Scholar 

  30. Yuan Y, Liu C, Lu J et al (2011) In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int J Nanomed. https://doi.org/10.2147/ijn.s24005

    Article  Google Scholar 

  31. Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252(1):1–15. https://doi.org/10.1046/j.1432-1327.1998.2520001.x

  32. Katiyar SK, Roy AM, Baliga MS (2005) Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol Cancer Ther 4:207–216. https://doi.org/10.1158/1535-7163.207.4.2

    Article  CAS  PubMed  Google Scholar 

  33. Gerloff K, Albrecht C, Boots AW, et al. (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3. https://doi.org/10.3109/17435390903276933

  34. Schrand AM, Rahman MF, Hussain SM, et al. (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology 2(5):544–68. https://doi.org/10.1002/wnan.103

  35. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44:1689–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916

    Article  PubMed  PubMed Central  Google Scholar 

  37. Winkler HC, Suter M, Naegeli H (2016) Critical review of the safety assessment of nano-structured silica additives in food. J Nanobiotechnol 14(1):44. https://doi.org/10.1186/s12951-016-0189-6

  38. Inoue KI, Takano H (2011) Aggravating impact of nanoparticles on immune-mediated pulmonary inflammation. Sci World J 11:382–390

    Article  CAS  Google Scholar 

  39. Thibodeau M, Giardina C, Hubbard AK (2003) Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolysis. Toxicol Sci 76:91–101. https://doi.org/10.1093/toxsci/kfg178

    Article  CAS  PubMed  Google Scholar 

  40. Asweto CO, Wu J, Alzain MA et al (2017) Cellular pathways involved in silica nanoparticles induced apoptosis: a systematic review of in vitro studies. Environ Toxicol Pharmacol 56:191–197

    Article  CAS  PubMed  Google Scholar 

  41. Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers’ health: a literature review. Saf Health Work 4(4):177–86. https://doi.org/10.1016/j.shaw.2013.07.006

  42. Kim EA, Park J, Kim KH et al (2012) Outbreak of sudden cardiac deaths in a tire manufacturing facility: can it be caused by nanoparticles? Saf Health Work 3:58–66. https://doi.org/10.5491/SHAW.2012.3.1.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Park EJ, Park K (2009) Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett 184:18–25. https://doi.org/10.1016/j.toxlet.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Dunphy DR, Jiang X et al (2012) Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Am Chem Soc 134:15790–15804. https://doi.org/10.1021/ja304907c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang F, Gao F, Lan M et al (2009) Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol Vitr 23:808–815. https://doi.org/10.1016/j.tiv.2009.04.009

    Article  CAS  Google Scholar 

  46. Napierska D, Thomassen LCJ, Lison D et al (2010) The nanosilica hazard: another variable entity. Part Fibre Toxicol 7:39. https://doi.org/10.1186/1743-8977-7-39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nabeshi H, Yoshikawa T, Matsuyama K et al (2011) Amorphous nanosilica induce endocytosis-dependent ROS generation and DNA damage in human keratinocytes. Part Fibre Toxicol 8:1. https://doi.org/10.1186/1743-8977-8-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gong C, Tao G, Yang L et al (2012) The role of reactive oxygen species in silicon dioxide nanoparticle-induced cytotoxicity and DNA damage in HaCaT cells. Mol Biol Rep 39:4915–4925. https://doi.org/10.1007/s11033-011-1287-z

    Article  CAS  PubMed  Google Scholar 

  49. Murugadoss S, Lison D, Godderis L et al (2017) Toxicology of silica nanoparticles: an update. Arch Toxicol 91:2967–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Swensson A, Glomme J, Bloom G (1956) On the toxicity of silica particles. ArchIndustHealth 14:482–486

    Google Scholar 

  51. Dekkers S, Bouwmeester H, Bos PMJ et al (2013) Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica. Nanotoxicology 7:367–377. https://doi.org/10.3109/17435390.2012.662250

    Article  CAS  PubMed  Google Scholar 

  52. Marzaioli V, Aguilar-Pimentel JA, Weichenmeier I et al (2014) Surface modifications of silica nanoparticles are crucial for their inert versus proinflammatory and immunomodulatory properties. Int J Nanomed 9:2815–2832. https://doi.org/10.2147/IJN.S57396

    Article  Google Scholar 

  53. Yang H, Liu C, Yang D et al (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78. https://doi.org/10.1002/jat.1385

    Article  CAS  PubMed  Google Scholar 

  54. Hejazy M, Koohi Mk, Asadpour F, Jabbarvand H (2017) Effect of nano–Zn on biochemical parameters in cadmium-exposed rats. Biol Trace Elem Res150. https://doi.org/10.1007/s12011-017-1008-0

Download references

Acknowledgements

The authors thank the Vice Chancellor for Research of University of Tabriz for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Masoumeh Firouzamandi and Marzie Hejazy have designed the research project and provided the research facilities and funding acquisition. Masoumeh Firouzamandi, Amir Ali Shahbazfar, and Marzie Hejazy have executed the statistical analysis and interpretation of data. Alaleh Mohammadi and Roghayyeh Norouzi have written the first draft of the manuscript. Alaleh Mohammadi and Masoumeh Firouzamandi have revised and edited the first draft of the manuscript. Alaleh Mohammadi and Masoumeh Firouzamandi have visualized the figures.

Corresponding author

Correspondence to Marzie Hejazy.

Ethics declarations

Ethics Approval

This study was carried out on female rats according EU Directive 2010/63/EU for animal experiments. The study also has been approved by Biomedical Ethics Committee of Tabriz University (Ethics number: IR.TABRIZU.REC.1400.010).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article entitled “In Vivo Toxicity of Oral Administrated Nano-SiO2: Can Food Additives Increase Apoptosis?” has not been published elsewhere and that it has not been simultaneously submitted for publication elsewhere.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouzamandi, M., Hejazy, M., Mohammadi, A. et al. In Vivo Toxicity of Oral Administrated Nano-SiO2: Can Food Additives Increase Apoptosis?. Biol Trace Elem Res 201, 4769–4778 (2023). https://doi.org/10.1007/s12011-022-03542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03542-7

Keywords

Navigation