Skip to main content
Log in

Th17-Related Cytokines Involved in Fluoride-Induced Cecal and Rectal Barrier Damage of Ovariectomized Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To investigate fluoride (F)-induced intestine barrier damage and the role of estrogen deficiency in this progress, a rat model of estrogen deficiency was established through bilateral surgical removal of ovaries. The F exposure model was then continued by adding sodium fluoride (0, 25, 50, and 100 mg/L, calculated on a fluorine ion basis) to drinking water for 90 days. Afterward, intestinal mucosal structure, barrier function, and inflammatory cytokines were evaluated. The results showed that excessive F decreased the developmental parameters (crypt depth) of the cecum and rectum and inhibited the proliferation capacity of the intestinal epithelia, which are more obvious in the state of estrogen deficiency. The distribution of goblet cells and glycoproteins in the intestinal mucosa decreased with the increase in F concentration, and estrogen deficiency led to a further decline, especially in the rectum. Using the immunofluorescence method, the study showed that excessive F caused interleukin-17A (IL-17A) significantly decrease in the cecum and increase in the rectum. Meanwhile, F treatment remarkably upregulated the expression of intestinal IL-1β, IL-23, and IL-22, while the level of IL-6 was downregulated. In addition, estrogen deficiency increased IL-1β, IL-6, IL-23, and IL-22, but decreased IL-17A expression in the cecum and rectum. Collectively, F exposure damaged intestinal morphological structure, inhibited epithelial cell proliferation and mucus barrier function, and resulted in the disturbance of T helper (Th) 17 cell-related cytokines expression. Estrogen deficiency may further aggravate F-induced damage to the cecum and rectum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Code Availability

Not applicable.

References

  1. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153. https://doi.org/10.1038/nri3608

    Article  CAS  PubMed  Google Scholar 

  2. Chelakkot C, Ghim J, Ryu SH (2018) Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp Mol Med 50:1–9. https://doi.org/10.1038/s12276-018-0126-x

    Article  CAS  PubMed  Google Scholar 

  3. Okumura R, Takeda K (2017) Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp Mol Med 49:e338. https://doi.org/10.1038/emm.2017.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Catalioto R-M, A. Maggi C, Giuliani S, (2011) Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions. Curr Med Chem 18:398–426. https://doi.org/10.2174/092986711794839179

    Article  CAS  PubMed  Google Scholar 

  5. Guan Q (2019) A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J Immunol Res 2019:1–16. https://doi.org/10.1155/2019/7247238

    Article  CAS  Google Scholar 

  6. Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685. https://doi.org/10.1038/nri3738

    Article  CAS  PubMed  Google Scholar 

  7. Maloy KJ, Powrie F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474:298–306. https://doi.org/10.1038/nature10208

    Article  CAS  PubMed  Google Scholar 

  8. Goodman WA, Bedoyan SM, Havran HL et al (2020) Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc Natl Acad Sci 117:17166–17176. https://doi.org/10.1073/pnas.2002266117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rizzetto L, Fava F, Tuohy KM, Selmi C (2018) Connecting the immune system, systemic chronic inflammation and the gut microbiome: the role of sex. J Autoimmun 92:12–34. https://doi.org/10.1016/j.jaut.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  10. Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16:626–638. https://doi.org/10.1038/nri.2016.90

    Article  CAS  PubMed  Google Scholar 

  11. Fish EN (2008) The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 8:737–744. https://doi.org/10.1038/nri2394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kane SV, Reddy D (2008) Hormonal replacement therapy after menopause is protective of disease activity in women with inflammatory bowel disease. Am J Gastroenterol 103:1193–1196. https://doi.org/10.1111/j.1572-0241.2007.01700.x

    Article  PubMed  Google Scholar 

  13. Gameiro CM, Romão F, Castelo-Branco C (2010) Menopause and aging: changes in the immune system–a review. Maturitas 67:316–320. https://doi.org/10.1016/j.maturitas.2010.08.003

    Article  CAS  PubMed  Google Scholar 

  14. Collins FL, Rios-Arce ND, Atkinson S et al (2017) Temporal and regional intestinal changes in permeability, tight junction, and cytokine gene expression following ovariectomy-induced estrogen deficiency. Physiol Rep 5:e13263. https://doi.org/10.14814/phy2.13263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei W, Pang S, Sun D (2019) The pathogenesis of endemic fluorosis: research progress in the last 5 years. J Cell Mol Med 23:2333–2342. https://doi.org/10.1111/jcmm.14185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohammadi AA, Yousefi M, Yaseri M et al (2017) Skeletal fluorosis in relation to drinking water in rural areas of West Azerbaijan. Iran Sci Rep 7:17300. https://doi.org/10.1038/s41598-017-17328-8

    Article  CAS  PubMed  Google Scholar 

  17. Mumtaz N, Pandey G, Labhasetwar PK (2015) Global fluoride occurrence, available technologies for fluoride removal, and electrolytic defluoridation: a review. Crit Rev Env Sci Tec 45(21):2357–2389. https://doi.org/10.1080/10643389.2015.1046768

    Article  CAS  Google Scholar 

  18. Johnston NR, Strobel SA (2020) Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 94:1051–1069. https://doi.org/10.1007/s00204-020-02687-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zuo H, Chen L, Kong M et al (2018) Toxic effects of fluoride on organisms. Life Sci 198:18–24. https://doi.org/10.1016/j.lfs.2018.02.001

    Article  CAS  PubMed  Google Scholar 

  20. Dionizio A, Uyghurturk DA, Melo CGS et al (2021) Intestinal changes associated with fluoride exposure in rats: integrative morphological, proteomic and microbiome analyses. Chemosphere 273:129607. https://doi.org/10.1016/j.chemosphere.2021.129607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu SQ, Liu J, Han B et al (1987) (2022) Fluoride exposure cause colon microbiota dysbiosis by destroyed microenvironment and disturbed antimicrobial peptides expression in colon. Environ Pollut Barking Essex 292:118381. https://doi.org/10.1016/j.envpol.2021.118381

    Article  CAS  Google Scholar 

  22. Liu S, Zhao J, Tian WS et al (2022) Estrogen deficiency aggravates fluorine ion-induced renal fibrosis via the TGF-β1/Smad signaling pathway in rats. Toxicol Lett 362:26–37. https://doi.org/10.1016/j.toxlet.2022.04.005

    Article  CAS  PubMed  Google Scholar 

  23. Yu YM, Zhou BH, Yang YL et al (2022) Estrogen deficiency aggravates fluoride-induced liver damage and lipid metabolism disorder in rats. Biol Trace Elem Res 200:2767–2776. https://doi.org/10.1007/s12011-021-02857-1

    Article  CAS  PubMed  Google Scholar 

  24. Wang HW, Liu J, Zhao WP et al (2019) Effect of fluoride on small intestine morphology and serum cytokine contents in rats. Biol Trace Elem Res 189:511–518. https://doi.org/10.1007/s12011-018-1503-y

    Article  CAS  PubMed  Google Scholar 

  25. Ando Y, Yang G-X, Tsuda M et al (2012) The immunobiology of colitis and cholangitis in interleukin-23p19 and interleukin-17A deleted dominant negative form of transforming growth factor beta receptor type II mice. Hepatol Baltim Md 56:1418–1426. https://doi.org/10.1002/hep.25803

    Article  CAS  Google Scholar 

  26. Wang HW, Zhao WP, Liu J et al (2017) Fluoride-induced oxidative stress and apoptosis are involved in the reducing of oocytes development potential in mice. Chemosphere 186:911–918. https://doi.org/10.1016/j.chemosphere.2017.08.068

    Article  CAS  PubMed  Google Scholar 

  27. Zhou BH, Zhao J, Liu J et al (2015) Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice. Chemosphere 139:504–511. https://doi.org/10.1016/j.chemosphere.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  28. Chauhan SS, Mahmood A, Ojha S (2013) Ethanol and age enhances fluoride toxicity through oxidative stress and mitochondrial dysfunctions in rat intestine. Mol Cell Biochem 384:251–262. https://doi.org/10.1007/s11010-013-1804-6

    Article  CAS  PubMed  Google Scholar 

  29. Job JT, Rajagopal R, Alfarhan A, Narayanankutty A (2022) Borassus flabellifer Linn haustorium methanol extract mitigates fluoride-induced apoptosis by enhancing Nrf2/Haeme oxygenase 1-dependent glutathione metabolism in intestinal epithelial cells. Drug Chem Toxicol 45:2269–2275. https://doi.org/10.1080/01480545.2021.1926476

    Article  CAS  PubMed  Google Scholar 

  30. Zhao W, Wang H, Tan P et al (2018) Fluoride exposure changed the structure and the function of sperm in the testis and epididymis of male rats. Fluoride 51:340–354

    CAS  Google Scholar 

  31. Maldonado-Contreras AL, McCormick BA (2011) Intestinal epithelial cells and their role in innate mucosal immunity. Cell Tissue Res 343:5–12. https://doi.org/10.1007/s00441-010-1082-5

    Article  CAS  PubMed  Google Scholar 

  32. Maloy KJ, Kullberg MC (2008) IL-23 and Th17 cytokines in intestinal homeostasis. Mucosal Immunol 1:339–349. https://doi.org/10.1038/mi.2008.28

    Article  CAS  PubMed  Google Scholar 

  33. Wu X, Tian J, Wang S (2018) Insight into non-pathogenic Th17 cells in autoimmune diseases. Front Immunol 9:1112. https://doi.org/10.3389/fimmu.2018.01112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang SC, Tan X-Y, Luxenberg DP et al (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203:2271–2279. https://doi.org/10.1084/jem.20061308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Slaats J, Ten Oever J, van de Veerdonk FL, Netea MG (2016) IL-1β/IL-6/CRP and IL-18/ferritin: distinct inflammatory programs in infections. PLoS Pathog 12:e1005973. https://doi.org/10.1371/journal.ppat.1005973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patnaude L, Mayo M, Mario R et al (2021) Mechanisms and regulation of IL-22-mediated intestinal epithelial homeostasis and repair. Life Sci 271:119195. https://doi.org/10.1016/j.lfs.2021.119195

    Article  CAS  PubMed  Google Scholar 

  37. Yasuda K, Takeuchi Y, Hirota K (2019) The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol 41:283–297. https://doi.org/10.1007/s00281-019-00733-8

    Article  PubMed  Google Scholar 

  38. Lee JS, Tato CM, Joyce-Shaikh B et al (2015) Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43:727–738. https://doi.org/10.1016/j.immuni.2015.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang HW, Zhou BH, Niu RY et al (2017) Analysis of the roles of dietary protein and calcium in fluoride-induced changes in T-lymphocyte subsets in rat. Environ Toxicol 32:1587–1595. https://doi.org/10.1002/tox.22386

    Article  CAS  PubMed  Google Scholar 

  40. Keir M, Yi T, Lu T, Ghilardi N (2020) The role of IL-22 in intestinal health and disease. J Exp Med 217:e20192195. https://doi.org/10.1084/jem.20192195

    Article  PubMed  PubMed Central  Google Scholar 

  41. Biswas SK (2016) Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev 2016:5698931. https://doi.org/10.1155/2016/5698931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tian T, Wang Z, Zhang J (2017) Pathomechanisms of oxidative stress in inflammatory bowel disease and potential antioxidant therapies. Oxid Med Cell Longev 2017:4535194. https://doi.org/10.1155/2017/4535194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Diebel ME, Diebel LN, Manke CW, Liberati DM (2015) Estrogen modulates intestinal mucus physiochemical properties and protects against oxidant injury. J Trauma Acute Care Surg 78:94–99. https://doi.org/10.1097/TA.0000000000000499

    Article  CAS  PubMed  Google Scholar 

  44. Díaz A, López-Grueso R, Gambini J et al (2019) Sex differences in age-associated type 2 diabetes in rats-role of estrogens and oxidative stress. Oxid Med Cell Longev 2019:6734836. https://doi.org/10.1155/2019/6734836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Borrás C, Sastre J, García-Sala D et al (2003) Mitochondria from females exhibit higher antioxidant gene expression and lower oxidative damage than males. Free Radic Biol Med 34:546–552. https://doi.org/10.1016/s0891-5849(02)01356-4

    Article  PubMed  Google Scholar 

  46. López-Grueso R, Gambini J, Abdelaziz KM et al (2014) Early, but not late onset estrogen replacement therapy prevents oxidative stress and metabolic alterations caused by ovariectomy. Antioxid Redox Signal 20:236–246. https://doi.org/10.1089/ars.2012.5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu M, Pal S, Paterson CW et al (2021) Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and Th17 cells. J Clin Invest 131:143137. https://doi.org/10.1172/JCI143137

    Article  PubMed  Google Scholar 

  48. Lorenzo J (2021) From the gut to bone: connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis. J Clin Invest 131:146619. https://doi.org/10.1172/JCI146619

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no.·32102740) and the Natural Science Foundation of Henan, China (Grant no. 202300410120).

Author information

Authors and Affiliations

Authors

Contributions

Xiao-ying Gao: formal analysis, writing the original draft, and preparation of the data presentation. Ye Jin: visualization, validation, and data curation. Jing Zhao: funding acquisition and validation. Yu-ling Zhang: validation and project administration. Hong-wei Wang: ideas, investigation, and critical review. Bian-hua Zhou: funding acquisition and validation, conceptualization, methodology, review and editing, and provision of resources.

Corresponding author

Correspondence to Bian-hua Zhou.

Ethics declarations

Ethics Approval

The experimental design was approved by the Institutional Animal Experiment Committee of Henan University of Science and Technology, China.

Consent to Participate

Written informed consent for publication was obtained from all participants.

Consent for Publication

Written informed consent for publication was obtained from all participants.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Xy., Jin, Y., Zhao, J. et al. Th17-Related Cytokines Involved in Fluoride-Induced Cecal and Rectal Barrier Damage of Ovariectomized Rats. Biol Trace Elem Res 201, 4497–4507 (2023). https://doi.org/10.1007/s12011-022-03519-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03519-6

Keywords

Navigation