Skip to main content
Log in

Melatonin Attenuates Extracellular Matrix Accumulation and Cardiac Injury Manifested by Copper

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Copper-induced cardiac injury is not widely reported in spite of its ability to cause oxidative damage and tissue injury. Structural and morphological changes in the cardiac tissue are triggered via oxidative stress and inflammatory responses following copper exposure. The varied and unavoidable exposure of copper through contaminated food and water warrants a safe and effective agent against its harmful effects. Since the heart is highly sensitive to changes in the redox balance, the present study was undertaken to examine the protective effects of melatonin against copper-induced cardiac injury. Sprague Dawley (SD) rats were exposed to 100 ppm of elemental copper via drinking water for 4 months. The cardiac tissue was evaluated for various biochemical, histological, and protein expression studies. Animals exposed to copper exhibited induced oxidative stress and cardiac injury compared to normal control. To this end, we found that melatonin treatment ameliorated copper-induced alterations in tissue oxidative variables like ROS, nitrate, MDA, and GSH. In addition, histological examinations unravelled decreased cardiac muscle dilation, atrophy, and cardiomyopathy in melatonin-treated rats. Furthermore, melatonin-treated rats were associated with reduced tissue copper levels, collagen deposition, α-SMA, and increased HO-1 expression as compared to rats exposed exclusively to copper. Moreover, the levels of NF-κB and cardiac markers such as CK-MB, cTnI, and cTnT were found to be decreased in the melatonin-treated animals. Altogether, melatonin-triggered increase in antioxidant capacity resulting in reduced aggregation of ECM components demonstrates the therapeutic potential of melatonin in the treatment of cardiac injury and tissue fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

α-SMA:

Alpha smooth muscle actin

CK-MB:

Creatinine kinase-MB

Cu:

Copper

CuSO4·5H2O:

Copper(II) sulfate pentahydrate

CVDs:

Cardiovascular diseases

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assay

GSH:

Reduced glutathione

H & E:

Hematoxylin and eosin

HO-I:

Heam oxygenase-I

IHC:

Immunohistochemistry

I.P.:

Intraperitoneal

M:

Melatonin

MT:

Masson’s trichrome

NC:

Normal control

NF-κB:

Nuclear factor kappa B

PBS:

Phosphate-buffered saline

PSR:

Picrosirius red, ROS: reactive oxygen species

SEM:

Standard error of mean

cTnI:

Troponin-I

cTnT:

Troponin-T

References

  1. Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63(5):797S-811S

    CAS  PubMed  Google Scholar 

  2. Yang A-M, Lo K, Zheng T-Z, Yang J-L, Bai Y-N, Feng Y-Q et al (2020) Environmental heavy metals and cardiovascular diseases: status and future direction. Chronic Dis Transl Med 6(4):251–259

    PubMed  PubMed Central  Google Scholar 

  3. Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T et al (2018) Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 362(29):362

    Google Scholar 

  4. Leone N, Courbon D, Ducimetiere P, Zureik M (2006) Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17(3):308–14

    PubMed  Google Scholar 

  5. Palinski W, Ylä-Herttuala S, Rosenfeld ME, Butler SW, Socher SA, Parthasarathy S et al (1990) Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Arteriosclerosis 10(3):325–335

    CAS  PubMed  Google Scholar 

  6. Ford ES (2000) Serum copper concentration and coronary heart disease among US adults. Am J Epidemiol 151(12):1182–1188

    CAS  PubMed  Google Scholar 

  7. Salonen JT, Salonen R, Korpela H, Suntioinen S, Tuomilehto J (1998) Serum copper and the risk of acute myocardial infarction: a prospective population study in men in eastern Finland. Am J Epidemiol 134(3):268–276

    Google Scholar 

  8. Kok FJ, van Duijn CM, Hofman A, van der Voet GB, de Wolff FA, Paays CHC et al (1998) Serum copper and zinc and the risk of death from cancer and cardiovascular disease. Am J Epidemiol 128(2):352–359

    Google Scholar 

  9. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87

    CAS  PubMed  Google Scholar 

  10. Tellez-Plaza M, Guallar E, Navas-Acien A (2018) Environmental metals and cardiovascular disease. BMJ 362:k3435

    PubMed  Google Scholar 

  11. Uriu-Adams JY, Keen CL (2005) Copper, oxidative stress, and human health. Mol Aspects Med 26(4–5):268–298

    CAS  PubMed  Google Scholar 

  12. Merle U, Eisenbach C, Weiss KH, Tuma S, Stremmel W (2009) Serum ceruloplasmin oxidase activity is a sensitive and highly specific diagnostic marker for Wilson’s disease. J Hepatol 51(5):925–930

    CAS  PubMed  Google Scholar 

  13. Padrilah SN, Ahmad SA, Yasid NA, Sabullah MK, Daud HM, Khalid A et al (2017) Toxic effects of copper on liver and cholinesterase of Clarias gariepinus. Environ Sci Pollut Res 24(28):22510–22523

    CAS  Google Scholar 

  14. Gaun S, Ali SA, Singh P, Patwa J, Flora SJS, Datusalia AK (2022) Melatonin ameliorates chronic copper-induced lung injury. Environ Sci Pollut Res (In-press)

  15. Patwa J, Flora S (2020) MiADMSA abrogates chronic copper-induced hepatic and immunological changes in Sprague Dawley rats. Food Chem Toxicol 145:111692

    CAS  PubMed  Google Scholar 

  16. Rockey DC, Bell PD, Hill JA (2015) Fibrosis—a common pathway to organ injury and failure. N Engl J Med 372(12):1138–1149

    CAS  PubMed  Google Scholar 

  17. Ardjmand A, Shahaboddin ME, Mazoochi T, Ghavipanjeh G (2019) Ameliorative effects of cerebrolysin against isoproterenol-induced myocardial injury in male rats. Life Sci 227:187–192

    CAS  PubMed  Google Scholar 

  18. Sarawi WS, Alhusaini AM, Fadda LM, Alomar HA, Albaker AB, Aljrboa AS et al (2021) Nano-curcumin prevents cardiac injury, oxidative stress and inflammation, and modulates TLR4/NF-κB and MAPK signaling in copper sulfate-intoxicated rats. Antioxidants 10(9):1414

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu L, Su Y, Zhao Y, Sheng X, Tong R, Ying X et al (2019) Melatonin differentially regulates pathological and physiological cardiac hypertrophy: crucial role of circadian nuclear receptor RORα signaling. J Pineal Res 67(2):e12579

    PubMed  Google Scholar 

  20. Pereira L, Ruiz-Hurtado G, Rueda A, Mercadier J-J, Benitah J-P, Gómez AM (2012) Calcium signaling in diabetic cardiomyocytes. Cell Calcium 56(5):372–380

    Google Scholar 

  21. Li L, Zhao Q, Kong W (2018) Extracellular matrix remodeling and cardiac fibrosis. Matrix Biol 68:490–506

    PubMed  Google Scholar 

  22. Erasmus M, Samodien E, Lecour S, Cour M, Lorenzo O, Dludla P et al (2020) Linking LOXL2 to cardiac interstitial fibrosis. Int J Mol Sci 21(16):5913

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nduhirabandi F, Maarman GJ (2018) Melatonin in heart failure: a promising therapeutic strategy? Molecules 23(7):1819

    PubMed  PubMed Central  Google Scholar 

  24. Negi G, Kumar A, Sharma SS (2011) Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-κB and Nrf2 cascades. J Pineal Res 50(2):124–131

    CAS  PubMed  Google Scholar 

  25. Sharma R, Reiter RJ, Ma Q (2019) Melatonin: a hypothesis regarding its use to treat Wilson disease. Med Hypotheses 133:109408

    CAS  PubMed  Google Scholar 

  26. Galano A, Medina ME, Tan DX, Reiter RJ (2015) Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J Pineal Res 58(1):107–116

    CAS  PubMed  Google Scholar 

  27. Parmar P, Limson J, Nyokong T, Daya S (2002) Melatonin protects against copper-mediated free radical damage. J Pineal Res 32(4):237–242

    CAS  PubMed  Google Scholar 

  28. Zhai M, Liu Z, Zhang B, Jing L, Li B, Li K et al (2017) Melatonin protects against the pathological cardiac hypertrophy induced by transverse aortic constriction through activating PGC-1β: in vivo and in vitro studies. J Pineal Res 63(3):e12433

    Google Scholar 

  29. Parihar K, Sankhla MS, Kumar R, Singh A (2020) Assessment of copper and iron concentration in water of Yamuna River, Delhi, India. Lett Appl NanoBioScience 10:2251–2257

    Google Scholar 

  30. Cooper G, Young A, Gamble G, Occleshaw C, Dissanayake A, Cowan B et al (2009) A copper (II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: a randomised placebo-controlled study. Diabetologia 52(4):715–722

    CAS  PubMed  Google Scholar 

  31. Liu Y, Xiao Y, Liu J, Feng L, Kang YJ (2018) Copper-induced reduction in myocardial fibrosis is associated with increased matrix metalloproteins in a rat model of cardiac hypertrophy. Metallomics 10(1):201–208

    CAS  PubMed  Google Scholar 

  32. Shokouhi G, Tubbs RS, Shoja MM, Hadidchi S, Ghorbanihaghjo A, Roshangar L et al (2008) Neuroprotective effects of high-dose vs low-dose melatonin after blunt sciatic nerve injury. Childs Nerv Syst 24(1):111–117

    PubMed  Google Scholar 

  33. Kumar V, Kalita J, Bora HK, Misra UK (2016) Temporal kinetics of organ damage in copper toxicity: a histopathological correlation in rat model. Regul Toxicol Pharmacol 81:372–380

    CAS  PubMed  Google Scholar 

  34. Kumar V, Kalita J, Misra U, Bora H (2015) A study of dose response and organ susceptibility of copper toxicity in a rat model. J Trace Elem Med Biol 29:269–274

    CAS  PubMed  Google Scholar 

  35. Kitazawa M, Hsu H-W, Medeiros R (2016) Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta. Toxicol Sci 152(1):194–204

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Field KJ, White WJ, Lang CM (1993) Anaesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab Anim 27(3):258–269

    CAS  PubMed  Google Scholar 

  37. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    CAS  PubMed  Google Scholar 

  38. Giustarini D, Rossi R, Milzani A, Dalle-Donne I (2008) Nitrite and nitrate measurement by Griess reagent in human plasma: evaluation of interferences and standardization. Methods Enzymol 440:361–380

    CAS  PubMed  Google Scholar 

  39. Owens C, Belcher R (1965) A colorimetric micro-method for the determination of glutathione. Biochem J 94(3):705

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Degli Esposti M (2002) Measuring mitochondrial reactive oxygen species. Methods 26(4):335–340

    CAS  PubMed  Google Scholar 

  41. Parker MM, Humoller FL, Mahler DJ (1967) Determination of copper and zinc in biological material. Clin Chem 13(1):40–48

    CAS  PubMed  Google Scholar 

  42. Kumar J, Sathua KB, Flora S (2019) Chronic copper exposure elicit neurotoxic responses in rat brain: assessment of 8-hydroxy-2-deoxyguanosine activity, oxidative stress and neurobehavioral parameters. Cell Mol Biol 65(1):27–35

    PubMed  Google Scholar 

  43. Seo E-H, Song G-Y, Namgung JH, Oh C-S, Lee SH, Kim S-H (2018) Receptor for activated C kinase 1 in rats with ischemia-reperfusion injury: Intravenous versus inhalation anaesthetic agents. Int J Med Sci 15(4):352

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang X, Ma Z-G, Yuan Y-P, Xu S-C, Wei W-Y, Song P et al (2018) Rosmarinic acid attenuates cardiac fibrosis following long-term pressure overload via AMPKα/Smad3 signaling. Cell Death Dis 9(2):1–14

    Google Scholar 

  45. Ali SA, Saifi MA, Pulivendala G, Godugu C, Talla V (2021) Ferulic acid ameliorates the progression of pulmonary fibrosis via inhibition of TGF-β/smad signalling. Food Chem Toxicol 149:111980

    CAS  PubMed  Google Scholar 

  46. Izydorczyk G, Mikula K, Skrzypczak D, Moustakas K, Witek-Krowiak A, Chojnacka K (2021) Potential environmental pollution from copper metallurgy and methods of management. Environ Res 197:111050

    CAS  PubMed  Google Scholar 

  47. Turok DK, Gero A, Simmons RG, Kaiser JE, Stoddard GJ, Sexsmith CD et al (2021) Levonorgestrel vs. copper intrauterine devices for emergency contraception. N Engl J Med 384(4):335–44

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang A-M, Lo K, Zheng T-Z, Yang J-L, Bai Y-N, Feng Y-Q et al (2020) Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Dis Transl Med 6(4):251–259

    PubMed  PubMed Central  Google Scholar 

  49. Kyu HH, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N et al (2018) Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392(10159):1859–1922

    Google Scholar 

  50. Maas AH, Appelman YE (2010) Gender differences in coronary heart disease. Neth Hear J 18(12):598–603

    CAS  Google Scholar 

  51. Bots SH, Peters SA, Woodward M (2017) Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Glob Health 2(2):e000298

    PubMed  PubMed Central  Google Scholar 

  52. Bashyam H (2007) Heavy metal for a troubled heart. J Exp Med 204(3):455

    PubMed Central  Google Scholar 

  53. Klevay LM (2006) Heart failure improvement from a supplement containing copper. Eur Heart J 27(1):117–118

    PubMed  Google Scholar 

  54. Milne DB, Johnson PE (1993) Assessment of copper status: effect of age and gender on reference ranges in healthy adults. Clin Chem 39(5):883–887

    CAS  PubMed  Google Scholar 

  55. ECHA (2007) Voluntary risk assassment of copper, copper ii sulphate pentahy-drate, copper(I)oxide, copper(II)oxide, Dicopper chloride trihydroxide; Eur-opean Union risk assessment report. European Copper Institute. http://echa.europa.eu/copper-voluntary-risk-assessment-reports

  56. Elliot J, Bowland J (1972) Response of rats to diets containing 250 ppm supplemental copper: growth, food conversion, liver copper accumulation, and fat composition. Can J Anim Sci 52(1):97–101

    CAS  Google Scholar 

  57. Karimi A, Sadeghi G, Vaziry A (2020) The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J Appl Poultry Res 20(2):203–209

    Google Scholar 

  58. Royer A, Sharman T (2020) Copper toxicity. In: StatPearls [Internet]. StatPearls Publishing LLC., Treasure Island (FL)

  59. Dominguez-Rodriguez A, Abreu-Gonzalez P, Sanchez-Sanchez JJ, Kaski JC, Reiter RJ (2010) Melatonin and circadian biology in human cardiovascular disease. J Pineal Res 49(1):14–22

    CAS  PubMed  Google Scholar 

  60. Lutsenko S, Washington-Hughes C, Ralle M, Schmidt K (2019) Copper and the brain noradrenergic system. J Biol Inorg Chem 24(8):1179–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Lal S, Sourkes TL (1971) Deposition of copper in rat tissues—the effect of dose and duration of administration of copper sulfate. Toxicol Appl Pharmacol 20(3):269–283

    CAS  PubMed  Google Scholar 

  62. Chouhan S, Flora S (2008) Effects of fluoride on the tissue oxidative stress and apoptosis in rats: biochemical assays supported by IR spectroscopy data. Toxicology 254(1–2):61–67

    CAS  PubMed  Google Scholar 

  63. Marklund SL (1986) Ceruloplasmin, extracellular-superoxide dismutase, and scavenging of superoxide anion radicals. J Free Radic Biol Med 2(4):255–260

    CAS  PubMed  Google Scholar 

  64. Kumari P, Saifi MA, Khurana A, Godugu C (2018) Cardioprotective effects of nanoceria in a murine model of cardiac remodeling. J Trace Elem Med Biol 50:198–208

    CAS  PubMed  Google Scholar 

  65. Kreusser MM, Lehmann LH, Keranov S, Hoting M-O, Oehl U, Kohlhaas M et al (2014) Cardiac CaM Kinase II genes δ and γ contribute to adverse remodeling but redundantly inhibit calcineurin-induced myocardial hypertrophy. Circulation 130(15):1262–1273

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schwarzer M, Osterholt M, Lunkenbein A, Schrepper A, Amorim P, Doenst T (2014) Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure. J Physiol 592(17):3767–3782

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yeung H, Hung M, Fung M (2008) Melatonin ameliorates calcium homeostasis in myocardial and ischemia–reperfusion injury in chronically hypoxic rats. J Pineal Res 45(4):373–382

    CAS  PubMed  Google Scholar 

  68. Thygesen K, Alpert J, Jaffe A, Simoons M, Chaitman B, Vasileva EY (2012) Task force for the universal definition of myocardial infarction. Third universal definition of myocardial infarction. Nat Rev Cardiol 9(11):620–33

    PubMed  Google Scholar 

  69. Abukhalil MH, Althunibat OY, Aladaileh SH, Al-Amarat W, Obeidat HM, Alayn’Al-marddyah A et al (2021) Galangin attenuates diabetic cardiomyopathy through modulating oxidative stress, inflammation and apoptosis in rats. Biomed Pharmacother 138:111410

    CAS  PubMed  Google Scholar 

  70. Liu S, He Y, Shi J, Liu L, Ma H, He L et al (2019) Allicin attenuates myocardial ischemia reperfusion injury in rats by inhibition of inflammation and oxidative stress. Transplant Proc 51(6):2060–2065

  71. Bertinchant J, Polge A, Juan J, Oliva-Lauraire M, Giuliani I, Marty-Double C et al (2003) Evaluation of cardiac troponin I and T levels as markers of myocardial damage in doxorubicin-induced cardiomyopathy rats, and their relationship with echocardiographic and histological findings. Clin Chim Acta 329(1–2):39–51

    CAS  PubMed  Google Scholar 

  72. Zhang Y, Wang Y, Xu J, Tian F, Hu S, Chen Y et al (2019) Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res 66(2):e12542

    PubMed  Google Scholar 

  73. Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y (2018) Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. J Pineal Res 64(3):e12471

    Google Scholar 

  74. Taniyama Y, Griendling KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42(6):1075–1081

    CAS  PubMed  Google Scholar 

  75. Morgan MJ, Liu Z-g (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21(1):103–115

    CAS  PubMed  Google Scholar 

  76. Hassanen EI, Tohamy A, Issa MY, Ibrahim MA, Farroh KY, Hassan AM (2019) Pomegranate juice diminishes the mitochondria-dependent cell death and NF-kB signaling pathway induced by copper oxide nanoparticles on liver and kidneys of rats. Int J Nanomed 14:8905

    CAS  Google Scholar 

  77. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhäuser C (2001) Nuclear factor κB is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J Biol Chem 276(34):32008–32015

    CAS  PubMed  Google Scholar 

  78. Alcaraz MJ, Vicente AM, Araico A, Dominguez JN, Terencio MC, Ferrándiz ML (2004) Role of nuclear factor‐κB and heme oxygenase‐1 in the mechanism of action of an anti‐inflammatory chalcone derivative in RAW 264.7 cells. Br J Pharmacol 142(7):1191–9

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang L, Ward M-L, Phillips AR, Zhang S, Kennedy J, Barry B et al (2013) Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats. Cardiovasc Diabetol 12(1):1–17

    CAS  Google Scholar 

  80. Saifi MA, Shaikh AS, Kaki VR, Godugu C (2022) Disulfiram prevents collagen crosslinking and inhibits renal fibrosis by inhibiting lysyl oxidase enzymes. J Cell Physiol 237(5):2516–2527

    CAS  PubMed  Google Scholar 

  81. Jiang J, Liang S, Zhang J, Du Z, Xu Q, Duan J et al (2021) Melatonin ameliorates PM2. 5‐induced cardiac perivascular fibrosis through regulating mitochondrial redox homeostasis. J Pineal Res 70(1):e12686

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, and the Director, NIPER-Raebareli, for providing the financial aid and resources.

Author information

Authors and Affiliations

Authors

Contributions

SAA: conceptualization, performed all the experiments, analyzed the data, prepared and edited the original draft. SB and JP: conceptualization and performed animal experiments. PK: performed metal estimation. MR and SN: conceptualization, review and edited the final draft. AKD: conceptualization, supervision, project administration, resources, funding acquisition, review and edited the final draft.

Corresponding author

Correspondence to Ashok Kumar Datusalia.

Ethics declarations

Ethics Approval

All the experiments on animals were approved by the Institutional Animal Ethics Committee (protocol no: NIPER/RBL/IAEC/84/Dec 2021) and as per the accordance of CPCSEA, Govt of India.

Consent to Participate

All authors reviewed and approved the final manuscript.

Consent for Publication

All authors approved this publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.A., ‬‬‬‬‬‬‬Bommaraju, S., Patwa, J. et al. Melatonin Attenuates Extracellular Matrix Accumulation and Cardiac Injury Manifested by Copper. Biol Trace Elem Res 201, 4456–4471 (2023). https://doi.org/10.1007/s12011-022-03509-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03509-8

Keywords

Navigation