Skip to main content
Log in

Alleviative Effect of Threonine on Cadmium-Induced Liver Injury in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

As a toxic trace element commonly found in food, cadmium (Cd) can cause severe liver injury. Our previous study showed that threonine (Thr) could significantly alleviate Cd toxicity in yeast. To investigate the effect of Thr on Cd-induced liver injury in mice, twenty-four mice were randomly divided into four groups: control, Cd, and low/high dose of Thr-treatment groups (0.04 and 0.08 mmol/kg/day, respectively). After 7 days of continuous treatment, the alleviative effect of Thr on liver injury in Cd-exposed mice was assessed. The results showed that Thr significantly reduced the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in Cd-exposed mice. Histological analysis showed that Thr decreased Cd-induced hepatic steatosis, zonal necrosis, and inflammatory cell infiltration. Thr also reduced the Cd-induced malondialdehyde (MDA) and O2− levels and restored superoxide dismutase (SOD) and catalase (CAT) activities in the liver. Further investigation showed that Thr significantly suppressed Cd-induced inflammatory response (tumor necrosis factor-α and interleukin-6) and restored the level of anti-apoptotic protein (Blc-2) but inhibited the elevation of pro-apoptotic proteins (Bax and caspase-3), as well as the activation of the PI3K/AKT signaling pathway in Cd-exposed mice. In conclusion, Thr alleviated Cd-induced liver injury through reducing Cd-induced oxidative stress, inflammation, and attenuating hepatocyte apoptosis via PI3K/AKT-related signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Suhani I, Sahab S, Srivastava V, Singh RP (2021) Impact of cadmium pollution on food safety and human health. Curr Opinion Toxicol 27:1–7. https://doi.org/10.1016/j.cotox.2021.04.004

    Article  CAS  Google Scholar 

  2. Dutta M, Kushwaha A, Kalita S, Devi G, Bhuyan M (2019) Assessment of bioaccumulation and detoxification of cadmium in soil-plant-insect food chain. Bioresource Technol Rep 7:100242. https://doi.org/10.1016/j.biteb.2019.100242

    Article  Google Scholar 

  3. Raghuvanshi R, Chaudhari A, Kumar GN (2016) Amelioration of cadmium- and mercury-induced liver and kidney damage in rats by genetically engineered probiotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid. Nutrition 32(11):1285–1294. https://doi.org/10.1016/j.nut.2016.03.009

    Article  CAS  PubMed  Google Scholar 

  4. Mariagrazia R, Antonio M, Herbert M, Bianca E, Adamo D, Puzzolo (2017) Cadmium, organ toxicity and therapeutic approaches. A review on brain, kidney and testis damage. Curr Med Chem 25:879–3893. https://doi.org/10.2174/0929867324666170801101448

    Article  CAS  Google Scholar 

  5. Martínez-Flores K (2012) Liver and cadmium toxicity. J Drug Metab Toxicolo 5:1. https://doi.org/10.13140/RG.2.1.1540.8243

    Article  Google Scholar 

  6. Ommati MM, Heidari R (2021) Chapter 38 - Betaine, heavy metal protection, oxidative stress, and the liver, in: V.B. Patel, V.R. Preedy (Eds.) Toxicology, Academic Press 387–395. https://doi.org/10.1016/B978-0-12-819092-0.00038-8

  7. Jiang Y, Liao XD, Xie M, Tang J, Qiao SY, Wen ZG, Hou SS (2018) Dietary threonine supplementation improves hepatic lipid metabolism of Pekin ducks. Anim Prod ence 99(5):2508–2518. https://doi.org/10.1016/j.psj.2019.10.059

    Article  CAS  Google Scholar 

  8. Ma N, Cai R, Sun C (2021) Threonine dehydratase enhances bacterial cadmium resistance via driving cysteine desulfuration and biomineralization of cadmium sulfide nanocrystals. J Hazard Mater 417:126102. https://doi.org/10.1016/j.jhazmat.2021.126102

    Article  CAS  PubMed  Google Scholar 

  9. Spann N, Aldridge DC, Griffin JL, Jones O (2011) Size-dependent effects of low level cadmium and zinc exposure on the metabolome of the Asian clam, Corbicula fluminea. Aquatic Toxicol (Amsterdam, Netherlands) 105(3–4):589–599. https://doi.org/10.1016/j.aquatox.2011.08.010

    Article  CAS  Google Scholar 

  10. Huang L, Fang Z, Gao J, Wang J, Gooneratne R (2021) Protective role of l-threonine against cadmium toxicity in Saccharomyces cerevisiae. J Basic Microbiol. https://doi.org/10.1002/jobm.202100012

  11. Almeer RS, AlBasher GI, Alarifi S, Alkahtani S, Ali D, Abdel Moneim AE (2019) Royal jelly attenuates cadmium-induced nephrotoxicity in male mice. Sci Rep 9(1):5825. https://doi.org/10.1038/s41598-019-42368-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4(1):1366. https://doi.org/10.1038/ncomms2371

    Article  CAS  PubMed  Google Scholar 

  13. Augustine N, Ani C, Eze W, Ugwudike P, Nwachukwu D (2020) The effect of aqueous extract of zest of citrus sinensis (AEZCs) on cadmium chloride induced liver toxicity in wistar rats. Afr J Biochem Res 14(1):5–17. https://doi.org/10.5897/AJBR2019.1051

    Article  Google Scholar 

  14. He S, Zhuo L, Cao Y, Liu G, Zhao H, Song R, Liu Z (2020) Effect of cadmium on osteoclast differentiation during bone injury in female mice. Environ Toxicol 35(4):487–494. https://doi.org/10.1002/tox.22884

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Zhang Y, Fang Z, Sun L, Wang Y, Liu Y, Xu D, Nie F, Gooneratne R (2019) Oleic acid alleviates cadmium-induced oxidative damage in rat by its radicals scavenging activity. Biol Trace Elem Res 190(1):95–100. https://doi.org/10.1007/s12011-018-1526-4

    Article  CAS  PubMed  Google Scholar 

  16. Zhu Y, Chen X, Rao X, Zheng C, Peng X (2019) Saikosaponin a ameliorates lipopolysaccharide and d-galactosamine-induced liver injury via activating LXRα. Int Immunopharmacol 72:131–137. https://doi.org/10.1016/j.intimp.2019.03.049

    Article  CAS  PubMed  Google Scholar 

  17. Almeer RS, Alarifi S, Alkahtani S, Ibrahim SR, Ali D, Moneim A (2018) The potential hepatoprotective effect of royal jelly against cadmium chloride-induced hepatotoxicity in mice is mediated by suppression of oxidative stress and upregulation of Nrf2 expression. Biomed Pharmacother 106:1490–1498. https://doi.org/10.1016/j.biopha.2018.07.089

    Article  CAS  PubMed  Google Scholar 

  18. He Q, Luo Y, Xie Z (2021) Sulforaphane ameliorates cadmium induced hepatotoxicity through the up-regulation of /Nrf2/ARE pathway and the inactivation of NF-κB. J Funct Foods 77:104297. https://doi.org/10.1016/j.jff.2020.104297

    Article  CAS  Google Scholar 

  19. Pan J-A, Sun Y, Jiang Y-P, Bott AJ, Jaber N, Dou Z, Yang B, Chen J-S, Catanzaro JM, Du C, Ding W-X, Diaz-Meco MT, Moscat J, Ozato K, Lin RZ, Zong W-X (2016) TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol Cell 61(5):720–733. https://doi.org/10.1016/j.molcel.2016.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Siregar AS, Nyiramana MM, Kim EJ, Cho SB, Woo MS, Lee DK, Hong SG, Han J, Kang SS, Kim DR, Choi YJ, Kang D (2021) Oyster-Derived Tyr-Ala (YA) Peptide Prevents lipopolysaccharide/D-galactosamine-induced acute liver failure by suppressing inflammatory, apoptotic, ferroptotic, and pyroptotic signals. Mar Drugs 19 (11). https://doi.org/10.3390/md19110614.

  21. Wang R, Song F, Li S, Wu B, Gu Y, Yuan Y (2019) Salvianolic acid A attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR, Bcl-2/Bax and caspase-3/cleaved caspase-3 signaling pathways. Drug Des Dev Ther 13:1889

    Article  CAS  Google Scholar 

  22. Liu L, Tao R, Huang J, He X, Qu L, Jin Y, Zhang S, Fu Z (2015) Hepatic oxidative stress and inflammatory responses with cadmium exposure in male mice. Environ Toxicol Pharmacol 39(1):229–236. https://doi.org/10.1016/j.etap.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  23. DeRosa G, Swick RW (1975) Metabolic implications of the distribution of the alanine aminotransferase isoenzymes. J Biol Chem 250(20):7961–7967. https://doi.org/10.1016/S0021-9258(19)40801-6

    Article  CAS  PubMed  Google Scholar 

  24. Fernando S, Wijewickrama A, Gomes L, Punchihewa CT, Madusanka SDP, Dissanayake H, Jeewandara C, Peiris H, Ogg GS, Malavige GN (2016) Patterns and causes of liver involvement in acute dengue infection. BMC Infect Dis 16(1):319. https://doi.org/10.1186/s12879-016-1656-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hwang DF, Wang LC (2001) Effect of taurine on toxicity of cadmium in rats. Toxicol 167(3):173–180. https://doi.org/10.1016/S0300-483X(01)00472-3

    Article  CAS  Google Scholar 

  26. Dong Y-W, Jiang W-D, Wu P, Liu Y, Kuang S-Y, Tang L, Tang W-N, Zhou X-Q, Feng L (2022) Nutritional digestion and absorption, metabolism fates alteration was associated with intestinal function improvement by dietary threonine in juvenile grass carp (Ctenopharyngodon Idella). Aquaculture 555:738194. https://doi.org/10.1016/j.aquaculture.2022.738194

    Article  CAS  Google Scholar 

  27. Jiang S, El-Senousey HK, Fan Q, Lin X, Gou Z, Li L, Wang Y, Fouad AM, Jiang Z (2019) Effects of dietary threonine supplementation on productivity and expression of genes related to protein deposition and amino acid transportation in breeder hens of yellow-feathered chicken and their offspring. Poult Sci 98(12):6826–6836. https://doi.org/10.3382/ps/pez420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holeček M, Mráz J, Tilšer I (1996) Plasma amino acids in four models of experimental liver injury in rats. Amino Acids 10(3):229–241. https://doi.org/10.1007/BF00807325

    Article  PubMed  Google Scholar 

  29. Fang J, Xie S, Chen Z, Wang F, Chen K, Zuo Z, Cui H, Guo H, Ouyang P, Chen Z, Huang C, Liu W, Geng Y (2021) Protective effect of vitamin E on cadmium-induced renal oxidative damage and apoptosis in rats. Biol Trace Elem Res 199:4675–4687. https://doi.org/10.1007/s12011-021-02606-4

  30. Cui H, Gao L, Zhang Y, Wang W, Yu G, Guan H, Zhang L, Li C (2015) Acetylated chitosan oligosaccharides act as antagonists against glutamate-induced PC12 cell death via Bcl-2/Bax signal pathway. Mar Drugs 13(3):1267–1289. https://doi.org/10.3390/md13031267

    Article  CAS  Google Scholar 

  31. Jemai H, Messaoudi I, Chaouch A, Kerkeni A (2007) Protective effect of zinc supplementation on blood antioxidant defense system in rats exposed to cadmium. J Trace Elem Med Biol 21(4):269–273. https://doi.org/10.1016/j.jtemb.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  32. Azzam MMM, Dong XY, Xie P, Zou XT (2012) Influence of L–threonine supplementation on goblet cell numbers, histological structure and antioxidant enzyme activities of laying hens reared in a hot and humid climate. Br Poult Sci 53(5):640–645. https://doi.org/10.1080/00071668.2012.726707

    Article  CAS  PubMed  Google Scholar 

  33. Polykretis P, Cencetti F, Donati C, Luchinat E, Banci L (2019) Cadmium effects on superoxide dismutase 1 in human cells revealed by NMR. Redox Biol 21:101102. https://doi.org/10.1016/j.redox.2019.101102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Diao L, Li N, Brayman TG, Hotz KJ, Lai Y (2010) Regulation of MRP2/ABCC2 and BSEP/ABCB11 Expression in Sandwich Cultured Human and Rat Hepatocytes Exposed to Inflammatory Cytokines TNF-α, IL-6, and IL-1β. J Biol Chem 285(41):31185–31192. https://doi.org/10.1074/jbc.M110.107805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwabe RF, Brenner DA (2006) Mechanisms of Liver Injury I TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol-Gastr L 290(4):G583–G589. https://doi.org/10.1152/ajpgi.00422.2005

    Article  CAS  Google Scholar 

  36. Chen Y, Zhang H, Cheng Y, Li Y, Wen C, Zhou Y (2018) Dietary l-threonine supplementation attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier damage of broiler chickens at an early age. Br J Nutr 119(11):1254–1262. https://doi.org/10.1017/S0007114518000740

    Article  CAS  PubMed  Google Scholar 

  37. Li C, Zhang S, Li L, Hu Q, Ji S (2020) Ursodeoxycholic acid protects against arsenic induced hepatotoxicity by the Nrf2 signaling pathway. Front Pharmacol 11:594496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan G, Dai S, Yin Z, Lu H, Jia R, Xu J, Song X, Li L, Shu Y, Zhao X, Chen Z, Fan Q, Liang X, He C, Yin L, Lv C, Lei Q, Wang L, Mi Y, Yu X, Zhang M (2014) Sub-chronic lead and cadmium co-induce apoptosis protein expression in liver and kidney of rats. Int J Clin Exp Pathol 7(6):2905–2914

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fan R, Hu P-c, Wang Y, Lin H-y, Su K, Feng X-s, Wei L, Yang F (2018) Betulinic acid protects mice from cadmium chloride-induced toxicity by inhibiting cadmium-induced apoptosis in kidney and liver. Toxicol Lett 299:56–66. https://doi.org/10.1016/j.toxlet.2018.09.003

    Article  CAS  PubMed  Google Scholar 

  40. Baird CH, Niederlechner S, Beck R, Kallweit AR, Wischmeyer PE (2013) L-Threonine induces heat shock protein expression and decreases apoptosis in heat-stressed intestinal epithelial cells. Nutrition 29(11):1404–1411. https://doi.org/10.1016/j.nut.2013.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dong Y-W, Feng L, Jiang W-D, Liu Y, Wu P, Jiang J, Kuang S-Y, Tang L, Tang W-N, Zhang Y-A, Zhou X-Q (2018) Dietary threonine deficiency depressed the disease resistance, immune and physical barriers in the gills of juvenile grass carp (Ctenopharyngodon idella) under infection of Flavobacterium columnare. Fish Shellfish Immunol 72:161–173. https://doi.org/10.1016/j.fsi.2017.10.048

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Gu J, Hu L, Kong L, Wang T, Di M, Li C, Gui S (2020) miR-130a alleviates neuronal apoptosis and changes in expression of Bcl-2/Bax and caspase-3 in cerebral infarction rats through PTEN/PI3K/Akt signaling pathway. Exp Ther Med 19(3):2119–2126. https://doi.org/10.3892/etm.2020.8415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cui W, Zhou S, Wang Y, Shi X, Liu H (2021) Cadmium exposure activates the PI3K/AKT signaling pathway through miRNA-21, induces an increase in M1 polarization of macrophages, and leads to fibrosis of pig liver tissue. Ecotoxicol Environ Saf 228:113015. https://doi.org/10.1016/j.ecoenv.2021.113015

    Article  CAS  PubMed  Google Scholar 

  44. Ryu JM, Han HJ (2011) L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J Biol Chem 286(27):23667–23678. https://doi.org/10.1074/jbc.M110.216283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 32172215 and 31701706), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515010809 and 2021A1515012443).

Author information

Authors and Affiliations

Authors

Contributions

Zhijia Fang: designed, conceptualization, methodology, and critical revision. Yongbin Li: reviewing, editing, and interpretation. Xinran Wang: software and investigation. Linru Huang assisted in animal treatment and collection of biological samples. Lijun Sun: supervision. Qi Deng: software and validation. Jingwen Wang designed the in vivo study, data curation, and writing—original draft preparation.

Corresponding author

Correspondence to Jingwen Wang.

Ethics declarations

Ethics Approval

All protocols were subject to the operating standard approved by the Laboratory Animal Ethics Committee of Guangdong Ocean University (approval number: GDOU-LAE-2020–009).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Li, Y., Wang, J. et al. Alleviative Effect of Threonine on Cadmium-Induced Liver Injury in Mice. Biol Trace Elem Res 201, 4437–4446 (2023). https://doi.org/10.1007/s12011-022-03506-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03506-x

Keywords

Navigation