Skip to main content

Advertisement

Log in

The Role of Reduced Glutathione on the Activity of Adenosine Deaminase, Antioxidative System, and Aluminum and Zinc Levels in Experimental Aluminum Toxicity

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aluminum (Al) is one of the most abundant element in the world. But aluminum exposure and accumulation causes serious diseases, related with free radicals. Reduced glutathione (GSH) is a tripeptide with intracellular antioxidant effects. This study aimed to investigate the role of GSH on adenosine deaminase (ADA), antioxidant system, and aluminum and zinc (Zn) levels in acute aluminum toxicity. In this study, Sprague–Dawley rats (n = 32) were used. The rats were divided into four equal groups (n = 8). Group I received 0.5 mL intraperitoneal injection of 0.9% saline solution (NaCI), Group II received single-dose AlCI3, Group III was given GSH for seven days, and Group IV was given AlCI3 single dose, and at the same time, 100 mg/kg GSH was given for seven days. At the end of the trial, blood samples were collected by cardiac puncture. Serum total antioxidant status (TAS) and Zn levels were lower in the aluminum-administered group than the control group. In contrast, plasma total oxidant status (TOS) and aluminum concentrations and ADA activity were found higher in the aluminum-administered group than in the control group. Unlike the other groups, group GSH administrated with aluminum was similar to the control group. As a result, GSH administration has a regulatory effect on ADA activity, antioxidant system, and Zn levels in experimental aluminum toxicity. In addition, GSH may reduce the oxidant capacity increased by Al administration and may have a tolerant role on the accumulated serum Al levels. But long-term experimental Al toxicity studies are needed to reach a firm conclusion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data are available in the article. It can also be requested from the corresponding author.

References

  1. Bezak-Mazur E, Widlak M, Ciupa T (2021) A speciation analysis of aluminium in the River Silnica. Pol J Environ Stud 10:263–267

    Google Scholar 

  2. Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Deloncle R, Huguet F, Babin P et al (1999) Chronic administration of aluminium l-glutamate in young mature rats: effects on iron levels and lipid peroxidation in selected brain areas. Toxicol Lett 104:65–73. https://doi.org/10.1016/S0378-4274(98)00345-2

    Article  CAS  PubMed  Google Scholar 

  4. Capriello T, Di Meglio G, De Maio A et al (2022) Aluminium exposure leads to neurodegeneration and alters the expression of marker genes involved to parkinsonism in zebrafish brain. Chemosphere 307:135752. https://doi.org/10.1016/j.chemosphere.2022.135752

    Article  CAS  PubMed  Google Scholar 

  5. Ruipérez F, Mujika JI, Ugalde JM et al (2012) Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II). J Inorg Biochem 117:118–123. https://doi.org/10.1016/j.jinorgbio.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  6. Paz LNF, Moura LM, Feio DCA et al (2017) Evaluation of in vivo and in vitro toxicological and genotoxic potential of aluminum chloride. Chemosphere 175:130–137. https://doi.org/10.1016/j.chemosphere.2017.02.011

    Article  CAS  PubMed  Google Scholar 

  7. Harsha SN, Anilakumar KR (2013) Protection against aluminium neurotoxicity: a repertoire of lettuce antioxidants. Biomed Aging Pathol 3:179–184. https://doi.org/10.1016/j.biomag.2013.08.004

    Article  CAS  Google Scholar 

  8. Bounous G, Molson JH (2003) The antioxidant system. Anticancer Res 23:1411–1415

    CAS  PubMed  Google Scholar 

  9. Irshad M, Chaudhuri PS (2002) Oxidant-antioxidant system: role and significance in human body. Indian J Exp Biol 40(11):1233

    CAS  PubMed  Google Scholar 

  10. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C849–C868. https://doi.org/10.1152/ajpcell.00283.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen J, Bradley RD (2011) Effects of oral glutathione supplementation on systemic oxidative stress biomarkers in human volunteers. J Altern Complement Med 17:827–833. https://doi.org/10.1089/acm.2010.0716

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kaplowitz N (1981) The importance and regulation of hepatic glutathione. Yale J Biol Med 54:497–502

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Murata K, Tani K, Kato J, Chibata I (1980) Glutathione production coupled with an ATP regeneration system. European J Appl Microbiol Biotechnol 10:11–21. https://doi.org/10.1007/BF00504723

    Article  CAS  Google Scholar 

  14. DeLeve LD, Kaplowitz N (1991) Glutathione metabolism and its role in hepatotoxicity. Pharmacol Ther 52:287–305. https://doi.org/10.1016/0163-7258(91)90029-L

    Article  CAS  PubMed  Google Scholar 

  15. Deponte M (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim et Biophys Acta (BBA) – Gen Sub 1830:3217–3266. https://doi.org/10.1016/j.bbagen.2012.09.018

    Article  CAS  Google Scholar 

  16. Richie JP, Nichenametla S, Neidig W et al (2015) Randomized controlled trial of oral glutathione supplementation on body stores of glutathione. Eur J Nutr 54:251–263. https://doi.org/10.1007/s00394-014-0706-z

    Article  CAS  PubMed  Google Scholar 

  17. Gao Z, Wang X, Zhang H et al (2021) The roles of adenosine deaminase in autoimmune diseases. Autoimmun Rev 20:102709. https://doi.org/10.1016/j.autrev.2020.102709

    Article  CAS  PubMed  Google Scholar 

  18. Antonioli L, Colucci R, La Motta C et al (2012) Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders. CDT 13:842–862. https://doi.org/10.2174/138945012800564095

    Article  CAS  Google Scholar 

  19. Gakis C (1996) Adenosine deaminase (ADA) isoenzymes ADA1 and ADA2: diagnostic and biological role. Eur Respir J 9:632–633

    Article  CAS  PubMed  Google Scholar 

  20. Flinn AM, Gennery AR (2018) Adenosine deaminase deficiency: a review. Orphanet J Rare Dis 13:65. https://doi.org/10.1186/s13023-018-0807-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Whitmore KV, Gaspar HB (2016) Adenosine deaminase deficiency – more than just an immunodeficiency. Front Immunol 7:314. https://doi.org/10.3389/fimmu.2016.00314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kumar V, Sharma A (2009) Adenosine: an endogenous modulator of innate immune system with therapeutic potential. Eur J Pharmacol 616:7–15. https://doi.org/10.1016/j.ejphar.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  23. Bagheri S, Saboury AA, Haertlé T (2019) Adenosine deaminase inhibition. Int J Biol Macromol 141:1246–1257. https://doi.org/10.1016/j.ijbiomac.2019.09.078

    Article  CAS  PubMed  Google Scholar 

  24. Haskó G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25:33–39. https://doi.org/10.1016/j.it.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  25. Camici M, Garcia-Gil M, Tozzi MG (2018) The inside story of adenosine. Int J Mol Sci 19:784. https://doi.org/10.3390/ijms19030784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Akinyemi AJ, Onyebueke N, Faboya OA et al (2017) Curcumin inhibits adenosine deaminase and arginase activities in cadmium-induced renal toxicity in rat kidney. J Food Drug Anal 25:438–446. https://doi.org/10.1016/j.jfda.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  27. Manzoni AG, Passos DF, da Silva JLG et al (2019) Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia. Blood Cells Mol Dis 76:13–21. https://doi.org/10.1016/j.bcmd.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  28. Leal FAVD, Gonçalves GD, Soncini JGM et al (2022) Exposure to aluminium chloride during the peripuberal period induces prostate damage in male rats. Acta Histochem 124:151843. https://doi.org/10.1016/j.acthis.2022.151843

    Article  CAS  PubMed  Google Scholar 

  29. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: development of a mineralomics method | SpringerLink. https://link.springer.com/article/10.1007/s12011-014-0033-5. Accessed 28 Oct 2022

  30. Mohammed Nawi A, Chin S-F, Jamal R (2020) Simultaneous analysis of 25 trace elements in micro volume of human serum by inductively coupled plasma mass spectrometry (ICP-MS). Pract Lab Med 18:e00142. https://doi.org/10.1016/j.plabm.2019.e00142

    Article  PubMed  Google Scholar 

  31. Giusti G, Galanti B (1984) Colorimetric method. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 1st edn. Verlag Chemie, Weinheim, Germany, pp 315–323

    Google Scholar 

  32. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37:277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015

    Article  CAS  PubMed  Google Scholar 

  33. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  34. El-Demerdash FM (2004) Antioxidant effect of vitamin E and selenium on lipid peroxidation, enzyme activities and biochemical parameters in rats exposed to aluminium. J Trace Elem Med Biol 18:113–121. https://doi.org/10.1016/j.jtemb.2004.04.001

    Article  CAS  PubMed  Google Scholar 

  35. Al Kahtani MA (2010) Renal damage mediated by oxidative stress in mice treated with aluminium chloride: protective effects of taurine. J Biol Sci 10:584–595. https://doi.org/10.3923/jbs.2010.584.595

    Article  CAS  Google Scholar 

  36. Wilhelm M, Jaeger DE, Schüll-Cablitz H et al (1996) Hepatic clearance and retention of aluminium: studies in the isolated perfused rat liver. Toxicol Lett 89:257–263. https://doi.org/10.1016/S0378-4274(96)03824-6

    Article  CAS  PubMed  Google Scholar 

  37. Laabbar W, Abbaoui A, Elgot A et al (2021) Aluminum induced oxidative stress, astrogliosis and cell death in rat astrocytes, is prevented by curcumin. J Chem Neuroanat 112:101915. https://doi.org/10.1016/j.jchemneu.2020.101915

    Article  CAS  PubMed  Google Scholar 

  38. Orihuela D, Meichtry V, Pregi N, Pizarro M (2005) Short-term oral exposure to aluminium decreases glutathione intestinal levels and changes enzyme activities involved in its metabolism. J Inorg Biochem 99:1871–1878. https://doi.org/10.1016/j.jinorgbio.2005.06.029

    Article  CAS  PubMed  Google Scholar 

  39. Nehru B, Anand P (2005) Oxidative damage following chronic aluminium exposure in adult and pup rat brains. J Trace Elem Med Biol 19:203–208. https://doi.org/10.1016/j.jtemb.2005.09.004

    Article  CAS  PubMed  Google Scholar 

  40. Hoffman DJ, Heinz GH (1998) Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. Environ Toxicol Chem 17:161–166. https://doi.org/10.1897/1551-5028(1998)017%3c0161:EOMASO%3e2.3.CO;2

    Article  CAS  Google Scholar 

  41. Yousef MI, Abdallah GA, Kamel KI (2003) Effect of ascorbic acid and Vitamin E supplementation on semen quality and biochemical parameters of male rabbits. Anim Reprod Sci 76:99–111. https://doi.org/10.1016/S0378-4320(02)00226-9

    Article  CAS  PubMed  Google Scholar 

  42. Anane R, Creppy EE (2001) Lipid peroxidation as pathway of aluminium cytotoxicity in human skin fibroblast cultures: prevention by superoxide dismutase+catalase and vitamins E and C. Hum Exp Toxicol 20:477–481. https://doi.org/10.1191/096032701682693053

    Article  CAS  PubMed  Google Scholar 

  43. Schmitt B, Vicenzi M, Garrel C, Denis FM (2015) Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: a comparative crossover study. Redox Biol 6:198–205. https://doi.org/10.1016/j.redox.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Atakisi E, Topcu B, Yildiz Dalginli K, et al (2016) Acute effects of N-acetylcysteine on total antioxidant capacity, total oxidant capacity, nitric oxide level and gammaglutamyl transpeptidase activity in rabbits. Kafkas Univ Vet Fak Derg https://doi.org/10.9775/kvfd.2016.15518

  45. Ghiselli A, Serafini M, Natella F, Scaccini C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biol Med 29:1106–1114. https://doi.org/10.1016/S0891-5849(00)00394-4

    Article  CAS  Google Scholar 

  46. Ibuki FK, Bergamaschi CT, da Silva PM, Nogueira FN (2020) Effect of vitamin C and E on oxidative stress and antioxidant system in the salivary glands of STZ-induced diabetic rats. Arch Oral Biol 116:104765. https://doi.org/10.1016/j.archoralbio.2020.104765

    Article  CAS  PubMed  Google Scholar 

  47. Hermes-Uliana C, Frez FCV, Sehaber CC et al (2018) Supplementation with l-glutathione improves oxidative status and reduces protein nitration in myenteric neurons in the jejunum in diabetic Rattus norvegicus. Exp Mol Pathol 104:227–234. https://doi.org/10.1016/j.yexmp.2018.05.002

    Article  CAS  PubMed  Google Scholar 

  48. Ran L, Chi Y, Huang Y et al (2020) Synergistic antioxidant effect of glutathione and edible phenolic acids and improvement of the activity protection by coencapsulation into chitosan-coated liposomes. LWT 127:109409. https://doi.org/10.1016/j.lwt.2020.109409

    Article  CAS  Google Scholar 

  49. Jiayu Y, Botta A, Simtchouk S et al (2020) Egg white consumption increases GSH and lowers oxidative damage in 110-week-old geriatric mice hearts. J Nutr Biochem 76:108252. https://doi.org/10.1016/j.jnutbio.2019.108252

    Article  CAS  PubMed  Google Scholar 

  50. Ferreira RC, Fragoso MBT, Bueno NB et al (2020) Oxidative stress markers in preeclamptic placentas: a systematic review with meta-analysis. Placenta 99:89–100. https://doi.org/10.1016/j.placenta.2020.07.023

    Article  CAS  PubMed  Google Scholar 

  51. Liu J-D, Liu W-B, Zhang D-D et al (2020) Dietary reduced glutathione supplementation can improve growth, antioxidant capacity, and immunity on Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol 100:300–308. https://doi.org/10.1016/j.fsi.2020.02.064

    Article  CAS  PubMed  Google Scholar 

  52. Yu H, Jing Y, Zhang X et al (2020) Comparison of intracellular glutathione and related antioxidant enzymes: impact of two glycosylated whey hydrolysates. Process Biochem 97:80–86. https://doi.org/10.1016/j.procbio.2020.06.028

    Article  CAS  Google Scholar 

  53. Atakisi O, Erdogan HM, Atakisi E et al (2010) Effects of reduced glutathione on nitric oxide level, total antioxidant and oxidant capacity and adenosine deaminase activity. Eur Rev Med Pharmacol Sci 14:19–23

    CAS  PubMed  Google Scholar 

  54. Yang XD, Zhang QQ, Chen RF, Shen RF (2008) Speciation of aluminum(III) complexes with oxidized glutathione in acidic aqueous solutions. Anal Sci 24:1005–1012. https://doi.org/10.2116/analsci.24.1005

    Article  CAS  PubMed  Google Scholar 

  55. Wang X, Li K, Yang XD et al (2009) Complexation of Al(III) with reduced glutathione in acidic aqueous solutions. J Inorg Biochem 103:657–665. https://doi.org/10.1016/j.jinorgbio.2008.11.007

    Article  CAS  PubMed  Google Scholar 

  56. Williams RJP (2002) Recent aspects of aluminium chemistry and biology: a survey. Coord Chem Rev 228:93–96. https://doi.org/10.1016/S0010-8545(02)00072-3

    Article  CAS  Google Scholar 

  57. Cooper BF, Sideraki V, Wilson DK et al (1997) The role of divalent cations in structure and function of murine adenosine deaminase. Protein Sci 6:1031–1037. https://doi.org/10.1002/pro.5560060509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Antonyan AA, Sharoyan SG, Harutyunyan AA, Mardanyan SS (2009) Influence of aluminum toxicosis on the activity of adenosine deaminase and dipeptidyl peptidases II and IV. Neurochem J 3:118–121. https://doi.org/10.1134/S181971240902007X

    Article  Google Scholar 

  59. Akinyemi AJ, Thome GR, Morsch VM et al (2016) Effect of dietary supplementation of ginger and turmeric rhizomes on ectonucleotidases, adenosine deaminase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of hypertensive rats. J Appl Biomed 14:59–70. https://doi.org/10.1016/j.jab.2015.06.001

    Article  Google Scholar 

  60. Metwally F, Mazhar M (2007) Effect of aluminium on the levels of some essential elements in occupationally exposed workers. Arch Ind Hyg Toxicol 58:305–311. https://doi.org/10.2478/v10004-007-0021-7

    Article  CAS  Google Scholar 

  61. Röllin HB, Theodorou P, Kilroe-Smith TA (1991) The effect of exposure to aluminium on concentrations of essential metals in serum of foundry workers. Br J Ind Med 48:243–246

    PubMed  PubMed Central  Google Scholar 

  62. Shang N, Zhang L, Wang S et al (2021) Increased aluminum and lithium and decreased zinc levels in plasma is related to cognitive impairment in workers at an aluminum factory in China: a cross-sectional study. Ecotoxicol Environ Saf 214:112110. https://doi.org/10.1016/j.ecoenv.2021.112110

    Article  CAS  PubMed  Google Scholar 

  63. Singla N, Dhawan DK (2013) Zinc protection against aluminium induced altered lipid profile and membrane integrity. Food Chem Toxicol 55:18–28. https://doi.org/10.1016/j.fct.2012.12.047

    Article  CAS  PubMed  Google Scholar 

  64. Zhu Y, Li Y, Miao L et al (2014) Immunotoxicity of aluminum. Chemosphere 104:1–6. https://doi.org/10.1016/j.chemosphere.2013.10.052

    Article  CAS  PubMed  Google Scholar 

  65. Koppenol WH (1993) The centennial of the Fenton reaction. Free Radical Biol Med 15:645–651. https://doi.org/10.1016/0891-5849(93)90168-T

    Article  CAS  Google Scholar 

  66. Aggett PJ (1984) Zinc metabolism in chronic renal insufficiency with or without dialysis therapy. Trace Elem Renal Insuff 38:95–102. https://doi.org/10.1159/000408072

    Article  CAS  Google Scholar 

  67. Senger MR, Rosemberg DB, Seibt KJ et al (2010) Influence of mercury chloride on adenosine deaminase activity and gene expression in zebrafish (Danio rerio) brain. Neurotoxicol 31:291–296. https://doi.org/10.1016/j.neuro.2010.03.003

    Article  CAS  Google Scholar 

  68. Öztürk P, Arıcan Ö, Kurutaş EB, Mülayim K (2016) Oxidative stress biomarkers and adenosine deaminase over the alopecic area of the patients with alopecia areata. Balkan Med J 33:188–192. https://doi.org/10.5152/balkanmedj.2016.16190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Znidarsic N, Tusek-Znidaric M, Falnoga I et al (2005) Metallothionein-like proteins and zinc–copper interaction in the hindgut of Porcellio scaber (Crustacea: Isopoda) exposed to zinc. Biol Trace Elem Res 106:253–264. https://doi.org/10.1385/BTER:106:3:253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the contributing researchers, Kafkas University, Çankırı Karatekin University, Igdir University, and Osh State University.

Author information

Authors and Affiliations

Authors

Contributions

O.A, E.A, K.Y.D, and C.A. conceived the original idea and build. O.A, D.K, T.T.Z, and C.G. supervised the research. Experiments were performed by O.A, K.YD, T.K, R.E. D E.A, and C.G. All authors read and approved the final manuscript written by O.A, E.A, and D.K. There are no conflicts to declare. Also all authors checked and approved the final manuscript.

Corresponding author

Correspondence to Onur Atakisi.

Ethics declarations

Ethics Approval

The study protocol was approved Kafkas University Animal Experimentation Ethics Board (KAU-HADYEK 2017-034).

Competing Interests

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atakisi, O., Dalginli, K.Y., Gulmez, C. et al. The Role of Reduced Glutathione on the Activity of Adenosine Deaminase, Antioxidative System, and Aluminum and Zinc Levels in Experimental Aluminum Toxicity. Biol Trace Elem Res 201, 4429–4436 (2023). https://doi.org/10.1007/s12011-022-03503-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03503-0

Keywords

Navigation