Skip to main content
Log in

Association of CYP19A1 Gene, Plasma Zinc, and Urinary Zinc with the Risk of Type 2 Diabetes Mellitus in a Chinese Population

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To explore the effects of CYP19A1 gene polymorphisms, plasma zinc, and urinary zinc levels and their interactions on type 2 diabetes mellitus (T2DM) in residents of Gongcheng County, Guangxi, China. The case–control study was used for the investing. The MassARRAY System was applied to genotype the CYP19A1 genes rs752760, rs10046, rs10459592, and rs700518 in 540 study subjects. Plasma and urinary zinc concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS). Conditional logistic regression showed that rs752760 and plasma zinc were associated with T2DM risks with ORs of 0.593 (95% CI: 0.371–0.948) and 0.563 (95% CI: 0.356–0.889), respectively. Unconditional logistic regression analysis showed an association between urinary zinc levels and the risk of T2DM as well, with an OR of 0.352 (95% CI: 0.212–0.585). The results of the multiplicative interaction model showed that the rs752760 T allele was associated with a significantly reduced risk of T2DM with moderate/low plasma zinc levels, with ORs of 0.340 (95% CI: 0.161–0.715) and 0.583 (95% CI: 0.346–0.981), respectively, and the rs752760 T allele was also associated with a significantly decreased risk of T2DM with moderate/low urinary zinc levels, with ORs of 0.358 (95% CI: 0.201–0.635) and 0.321 (95% CI: 0.183–0.562), respectively. CYP19A1 rs752760 T allele and moderate/low plasma/urinary zinc levels reduce the risk of T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available due to [REASON(S) WHY DATA ARE NOT PUBLIC] but are available from the corresponding authors on reasonable request.

References

  1. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 389(10085):2239–2251

    CAS  PubMed  Google Scholar 

  2. Zimmet P, Alberti KG, Magliano DJ, Bennett PH (2016) Diabetes mellitus statistics on prevalence and mortality: facts and fallacies. Nat Rev Endocrinol 12(10):616–622

    PubMed  Google Scholar 

  3. Fernández-Cao JC, Warthon-Medina M, Arija HMVV, Doepking C, Serra-Majem L, Lowe NM (2019) Zinc intake and status and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Nutrients 11(5):1027

    PubMed  PubMed Central  Google Scholar 

  4. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88–98

    PubMed  Google Scholar 

  5. Bao XY, Peng B, Yang MS (2012) Replication study of novel risk variants in six genes with type 2 diabetes and related quantitative traits in the Han Chinese lean individuals. Mol Biol Rep 39(3):2447–2454

    CAS  PubMed  Google Scholar 

  6. Flores CR, Puga MP, Wrobel K, GaraySevilla ME, Wrobel K (2011) Trace elements status in diabetes mellitus type 2: possible role of the interaction between molybdenum and copper in the progress of typical complications. Diabetes Res Clin Pract 91(3):333–41

    CAS  PubMed  Google Scholar 

  7. Naqshbandi M, Harris SB, Esler JG, Antwi-Nsiah F (2008) Global complication rates of type 2 diabetes in Indigenous peoples: a comprehensive review. Diabetes Res Clin Pract 82(1):1–17

    PubMed  Google Scholar 

  8. Doddigarla Z, Parwez I, Ahmad J (2016) Correlation of serum chromium, zinc, magnesium and SOD levels with HbA1c in type 2 diabetes: a cross sectional analysis. Diabetes Metab Syndr 10(1 Suppl 1):S126–S129

    PubMed  Google Scholar 

  9. Kato N (2013) Insights into the genetic basis of type 2 diabetes. J Diabetes Investig 4(3):233–244

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hosseini E, Shahhoseini M, Afsharian P, Karimian L, Ashrafi M, Mehraein F, Afatoonian R (2019) Role of epigenetic modifications in the aberrant CYP19A1 gene expression in polycystic ovary syndrome. Arch Med Sci 15(4):887–895

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Means GD, Mahendroo MS, Corbin CJ, Mathis JM, Powell FE, Mendelson CR, Simpson ER (1989) Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis. J Biol Chem 264(32):19385–19391

    CAS  PubMed  Google Scholar 

  12. Xu WH, Dai Q, Xiang YB, Long JR, Ruan ZX, Cheng JR, Zheng W, Shu XO (2007) Interaction of soy food and tea consumption with CYP19A1 genetic polymorphisms in the development of endometrial cancer. Am J Epidemiol 166(12):1420–1430

    PubMed  Google Scholar 

  13. Travis RC, Schumacher F, Hirschhorn JN, Kraft P, Allen NE, Albanes D, Berglund G, Berndt SI, Boeing H, Bueno-de-Mesquita HB, Calle EE, Chanock S, Dunning AM, Hayes R, Feigelson HS, Gaziano JM, Giovannucci E, Haiman CA, Henderson BE, Kaaks R, Kolonel LN, Ma J, Rodriguez L, Riboli E, Stampfer M, Stram DO, Thun MJ, Tjønneland A, Trichopoulos D, Vineis P, Virtamo J, Le Marchand L, Hunter DJ (2009) CYP19A1 genetic variation in relation to prostate cancer risk and circulating sex hormone concentrations in men from the Breast and Prostate Cancer Cohort Consortium. Cancer Epidemiol Biomark Prev 18(10):2734–2744

    CAS  Google Scholar 

  14. Long JR, Kataoka N, Shu XO, Wen W, Gao YT, Cai Q, Zheng W (2006) Genetic polymorphisms of the CYP19A1 gene and breast cancer survival. Cancer Epidemiol Biomark Prev 15(11):2115–2122

    CAS  Google Scholar 

  15. Kamiński A, Bogacz A, Górska-Paukszta M, Seremak-Mrozikiewicz A, Czerny B (2019) Correlation of rs749292 and rs700518 polymorphisms in the aromatase gene (CYP19A1) with osteoporosis in postmenopausal Polish women. Adv Clin Exp Med 28(8):1067–1071

    PubMed  Google Scholar 

  16. Tsuchiya N, Wang L, Suzuki H, Segawa T, Fukuda H, Narita S, Shimbo M, Kamoto T, Mitsumori K, Ichikawa T, Ogawa O, Nakamura A, Habuchi T (2006) Impact of IGF-I and CYP19 gene polymorphisms on the survival of patients with metastatic prostate cancer. J Clin Oncol 24(13):1982–1989

    CAS  PubMed  Google Scholar 

  17. Haiman CA, Dossus L, Setiawan VW, Stram DO, Dunning AM, Thomas G, Thun MJ, Albanes D, Altshuler D, Ardanaz E, Boeing H, Buring J, Burtt N, Calle EE, Chanock S, Clavel-Chapelon F, Colditz GA, Cox DG, Feigelson HS, Hankinson SE, Hayes RB, Henderson BE, Hirschhorn JN, Hoover R, Hunter DJ, Kaaks R, Kolonel LN, Le Marchand L, Lenner P, Lund E, Panico S, Peeters PH, Pike MC, Riboli E, Tjonneland A, Travis R, Trichopoulos D, Wacholder S, Ziegler RG (2007) Genetic variation at the CYP19A1 locus predicts circulating estrogen levels but not breast cancer risk in postmenopausal women. Cancer Res 67(5):1893–1897

    CAS  PubMed  Google Scholar 

  18. Nadal A, Alonso-Magdalena P, Soriano S, Quesada I, Ropero AB (2009) The pancreatic beta-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol Cell Endocrinol 304(1–2):63–68

    CAS  PubMed  Google Scholar 

  19. Barros RP, Morani A, Moriscot A, Machado UF (2008) Insulin resistance of pregnancy involves estrogen-induced repression of muscle GLUT4. Mol Cell Endocrinol 295(1–2):24–31

    CAS  PubMed  Google Scholar 

  20. Meyer JA, Spence DM (2009) A perspective on the role of metals in diabetes: past findings and possible future directions. Metallomics 1(1):32–41

    CAS  Google Scholar 

  21. Moore WT, Bowser SM, Fausnacht DW, Staley LL, Suh KS, Liu D (2015) Beta cell function and the nutritional state: dietary factors that influence insulin secretion. Curr Diab Rep 15(10):76

    PubMed  Google Scholar 

  22. Nishi Y (1996) Zinc and growth. J Am Coll Nutr 15(4):340–344

    CAS  PubMed  Google Scholar 

  23. Bedwal RS, Bahuguna A (1994) Zinc, copper and selenium in reproduction. Experientia 50(7):626–640

    CAS  PubMed  Google Scholar 

  24. Om AS, Chung KW (1996) Dietary zinc deficiency alters 5 alpha-reduction and aromatization of testosterone and androgen and estrogen receptors in rat liver. J Nutr 126(4):842–848

    CAS  PubMed  Google Scholar 

  25. Maremanda KP, Srivalliputturu SB, Jena G (2020) Zinc deficient diet exacerbates the testicular and epididymal damage in type 2 diabetic rat: studies on oxidative stress-related mechanisms. Reprod Biol 20(2):191–201

    PubMed  Google Scholar 

  26. Ranasinghe P, Wathurapatha WS, Galappatthy P, Katulanda P, Jayawardena R, Constantine GR (2018) Zinc supplementation in prediabetes: a randomized double-blind placebo-controlled clinical trial. J Diabetes 10(5):386–397

    CAS  PubMed  Google Scholar 

  27. Yin J, Wang X, Li S, Zhu Y, Chen S, Li P, Luo C, Huang Y, Li X, Hu X, Yang W, Bao W, Shan Z, Liu L (2019) Interactions between plasma copper concentrations and SOD1 gene polymorphism for impaired glucose regulation and type 2 diabetes. Redox Biol 24:101172

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu M, Cai J, Mo X, Liu Q, Zhang J, Wei Y, Liu S, Lin Y, Huang S, Mo C, Mai T, Tan D, Zhang Z, Qin J (2022) Association of dietary and plasma magnesium with glycaemic markers in a Chinese population. Biol Trace Elem Res

  29. Mo X, Cai J, Lin Y, Liu Q, Xu M, Zhang J, Liu S, Wei C, Wei Y, Huang S, Mai T, Tan D, Lu H, Luo T, Gou R, Zhang Z, Qin J (2021) Correlation between urinary contents of some metals and fasting plasma glucose levels: a cross-sectional study in China. Ecotoxicol Environ Saf 228:112976

    CAS  PubMed  Google Scholar 

  30. Coban N, Onat A, Guclu-Geyik F, Can G, Erginel-unaltuna N (2015) sex- and obesity-specific association of aromatase (CYP19A1) gene variant with apolipoprotein b and hypertension. Arch Med Res 46(7):564–571

    CAS  PubMed  Google Scholar 

  31. Yang Y, Wang P (2020) Association of CYP19A1 and CYP1A2 genetic polymorphisms with type 2 diabetes mellitus risk in the Chinese Han population. Lipids Health Dis 19(1):187

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM, Graham-Lorence S, Amarneh B, Ito Y, Fisher CR, Michael MD et al (1994) Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev 15(3):342–355

    CAS  PubMed  Google Scholar 

  33. Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, Martin R, Utsunomiya H, Thung S, Gurates B, Tamura M, Langoi D, Deb S (2005) Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev 57(3):359–383

    CAS  PubMed  Google Scholar 

  34. Bulun SE, Sebastian S, Takayama K, Suzuki T, Sasano H, Shozu M (2003) The human CYP19 (aromatase P450) gene: update on physiologic roles and genomic organization of promoters. J Steroid Biochem Mol Biol 86(3–5):219–224

    CAS  PubMed  Google Scholar 

  35. Eriksson AL, Lorentzon M, Vandenput L, Labrie F, Lindersson M, Syvänen AC, Orwoll ES, Cummings SR, Zmuda JM, Ljunggren O, Karlsson MK, Mellström D, Ohlsson C (2009) Genetic variations in sex steroid-related genes as predictors of serum estrogen levels in men. J Clin Endocrinol Metab 94(3):1033–1041

    CAS  PubMed  Google Scholar 

  36. Mauvais-Jarvis F, Clegg DJ, Hevener AL (2013) The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 34(3):309–338

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Muka T, Nano J, Jaspers L, Meun C, Bramer WM, Hofman A, Dehghan A, Kavousi M, Laven JS, Franco OH (2017) Associations of steroid sex hormones and sex hormone-binding globulin with the risk of type 2 diabetes in women: a population-based cohort study and meta-analysis. Diabetes 66(3):577–586

    CAS  PubMed  Google Scholar 

  38. Yeung EH, Zhang C, Mumford SL, Ye A, Trevisan M, Chen L, Browne RW, Wactawski-Wende J, Schisterman EF (2010) Longitudinal study of insulin resistance and sex hormones over the menstrual cycle: the BioCycle Study. J Clin Endocrinol Metab 95(12):5435–5442

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ding EL, Song Y, Malik VS, Liu S (2006) Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 295(11):1288–1299

    CAS  PubMed  Google Scholar 

  40. Zha W, Ho HTB, Hu T, Hebert MF, Wang J (2017) Serotonin transporter deficiency drives estrogen-dependent obesity and glucose intolerance. Sci Rep 7(1):1137

    PubMed  PubMed Central  Google Scholar 

  41. Li XT, Yu PF, Gao Y, Guo WH, Wang J, Liu X, Gu AH, Ji GX, Dong Q, Wang BS, Cao Y, Zhu BL, Xiao H (2017) Association between plasma metal levels and diabetes risk: a case-control study in China. Biomed Environ Sci 30(7):482–491

    CAS  PubMed  Google Scholar 

  42. Shan Z, Bao W, Zhang Y, Rong Y, Wang X, Jin Y, Song Y, Yao P, Sun C, Hu FB, Liu L (2014) Interactions between zinc transporter-8 gene (SLC30A8) and plasma zinc concentrations for impaired glucose regulation and type 2 diabetes. Diabetes 63(5):1796–1803

    CAS  PubMed  Google Scholar 

  43. Yary T, Virtanen JK, Ruusunen A, Tuomainen TP, Voutilainen S (2016) Serum zinc and risk of type 2 diabetes incidence in men: The Kuopio Ischaemic Heart Disease Risk Factor Study. J Trace Elem Med Biol 33:120–124

    CAS  PubMed  Google Scholar 

  44. Siddiqui K, Bawazeer N, Joy SS (2014) Variation in macro and trace elements in progression of type 2 diabetes. ScientificWorldJournal 2014:461591

    PubMed  PubMed Central  Google Scholar 

  45. Skalnaya MG, Skalny AV, Tinkov AA (2017) Serum copper, zinc, and iron levels, and markers of carbohydrate metabolism in postmenopausal women with prediabetes and type 2 diabetes mellitus. J Trace Elem Med Biol 43:46–51

    CAS  PubMed  Google Scholar 

  46. Bunce GE, Vessal M (1987) Effect of zinc and/or pyridoxine deficiency upon oestrogen retention and oestrogen receptor distribution in the rat uterus. J Steroid Biochem 26(3):303–308

    CAS  PubMed  Google Scholar 

  47. Sunar F, Gormus ZI, Baltaci AK, Mogulkoc R (2008) The effect of low dose zinc supplementation to serum estrogen and progesterone levels in post-menopausal women. Biol Trace Elem Res 126(Suppl 1):S11–S14

    CAS  PubMed  Google Scholar 

  48. Denier X, Hill EM, Rotchell J, Minier C (2009) Estrogenic activity of cadmium, copper and zinc in the yeast estrogen screen. Toxicol In Vitro 23(4):569–573

    CAS  PubMed  Google Scholar 

  49. Qi L, Hu FB, Hu G (2008) Genes, environment, and interactions in prevention of type 2 diabetes: a focus on physical activity and lifestyle changes. Curr Mol Med 8(6):519–532

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply appreciative of the participants in this study, and we thank all the staff for their support and assistance.

Funding

The study was supported by the National Natural Science Foundation of China (Grant Nos. 81960583, 81760577, 81560523, and 82260629), Major Science and Technology Projects in Guangxi (AA22096026), the Guangxi Science and Technology Development Project (Grant Nos. AD 17129003 and 18050005), the Guangxi Natural Science Foundation for Innovation Research Team (2019GXNSFGA245002), and the Guangxi Scholarship Fund of Guangxi Education Department of China.

Author information

Authors and Affiliations

Authors

Contributions

Xuexiu Wang analyzed the data and wrote the manuscript. Yujian Liang, Qiumei Liu, and Jiansheng Cai revised the manuscript and gave suggestions. Xu Tang, Shuzhen Liu, Junling Zhang, Min Xu, Chunmei Wei, Xiaoting Mo, Yanfei Wei, Yinxia Lin, Shenxiang Huang, Tingyu Mai, Dechan Tan, Tingyu Luo, and Ruoyu Gou collected the relevant data. Jian Qin and Zhiyong Zhang put forward the study topic and provided advice on the writing of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jian Qin or Zhiyong Zhang.

Ethics declarations

Ethics Approval

Approval was obtained from the ethics committee of Guilin Medical University (No. 20180702–3). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to Participate

Written informed consent files were received from all participants before the study.

Consent for Publication

The participant has consented to the submission of the case report to the journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Liang, Y., Liu, Q. et al. Association of CYP19A1 Gene, Plasma Zinc, and Urinary Zinc with the Risk of Type 2 Diabetes Mellitus in a Chinese Population. Biol Trace Elem Res 201, 4205–4215 (2023). https://doi.org/10.1007/s12011-022-03502-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03502-1

Keywords

Navigation