Skip to main content

Advertisement

Log in

Morphological and Transcriptomic Analysis of the Supplemental Boron in the Liver of Ostrich Chicks

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

African ostrich chicks (Struthio camelus) were divided into six groups, and each received different levels of boric acid (source of boron) in the drinking water (0, 40, 80, 160, 320, and 640 mg/L respectively) to examine the histological, apoptotic, biochemical, and transcriptomic parameters. Morphological analysis in different groups was assessed by hematoxylin and eosin (H&E) staining, periodic acid Schiff (PAS) staining, and terminal deoxynucleotide transferase dUTP Nick-End Labeling (TUNEL) assay. The biochemical profile was evaluated spectrophotometrically. Detailed RNA-Seq of the data was performed using the transcriptomic method. H&E staining showed well-developed liver structure up to the 160 mg/L boric acid (BA) supplement groups, while BA doses (320 mg/L and 640 mg/L) caused changes in hepatocytes and portal triads. PAS staining showed that glycogen levels were optimal in the 80 mg/L BA dose group, but a reduction in glycogen levels was observed after this group, particularly in the 640 mg/L BA supplement group. Cellular apoptosis showed a biphasic pattern, and the BA dose above 160 mg/L enhanced cell death. In addition, serum analysis showed that doses of 80–160 mg BA were beneficial for ostrich liver. Then, the transcriptome analysis of the 80 mg dose also showed mainly positive effects on the liver. These results demonstrated that chronic BA exposure (320–640 mg) can cause significant histological, apoptotic, and biochemical changes in African ostrich liver, while the adequate dose of supplementation (particularly 80 mg BA) promotes liver growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article. The supplementary material is available from the corresponding author upon reasonable request.

References

  1. Nielsen FH, Eckhert CD (2020) Boron Adv Nutr 11(2):461–462

    Article  PubMed  Google Scholar 

  2. Bagchi D, Bagchi M (2020) Metal toxicology handbook, 1st edn. CRC Press, Boca Raton, FL, USA

    Book  Google Scholar 

  3. Kot FS (2009) Boron sources, speciation and its potential impact on health. Rev Environ Sci Biotechnol 8(1):3–28

    Article  CAS  Google Scholar 

  4. Kabu M, Uyarlar C, Zarczynska K, Milewska W, Sobiech P (2015) The role of boron in animal health. J Elem 20(2):535–541

    Google Scholar 

  5. Khaliq H, Juming Z, Peng KM (2018) The physiological role of boron on health. Biol Trace Elem Res 186(1):31–51

    Article  CAS  PubMed  Google Scholar 

  6. Nielsen FH (2020) Manganese, molybdenum, boron, silicon and other trace elements. In: Marriott B, Birt D, Stallings G, Yates A (eds) Present Knowl Nutr, 11th edn. Elsevier, Amsterdam, pp 485–500

    Chapter  Google Scholar 

  7. Abdelnour SA, Abd El-Hack ME, Swelum AA, Perillo A, Losacco C (2018) The vital roles of boron in animal health and production: a comprehensive review. J Trace Elem Med Biol 50:296–304

    Article  CAS  PubMed  Google Scholar 

  8. Kabu M, Civelek T (2012) Effects of propylene glycol, methionine and sodium borate on metabolic profile in dairy cattle during periparturient period. Rev Med Vet 163(8):419–430

    CAS  Google Scholar 

  9. Sharma A, Mani V, Pal RP, Sarkar S, Sharma H, Yadav S, Datt C (2022) Effect of boron supplementation on nutrient utilization and productive performance of peripartum Murrah buffaloes. Biol Trace Elem Res 200(10):4303–4315

    Article  CAS  PubMed  Google Scholar 

  10. Mogoşanu GD, Biţă A, Bejenaru LE, Bejenaru C, Croitoru O, Rău G, Rogoveanu OC, Florescu DN, Neamţu J, Scorei ID, Scorei RI (2016) Calcium fructoborate for bone and cardiovascular health. Biol Trace Elem Res 172(2):277–281

    Article  PubMed  Google Scholar 

  11. Ghanizadeh G, Babaei M, Naghii MR, Mofid M, Torkaman G, Hedayati M (2014) The effect of supplementation of calcium, vitamin D, boron, and increased fluoride intake on bone mechanical properties and metabolic hormones in rat. Toxicol Ind Health 30(3):211–217

    Article  CAS  PubMed  Google Scholar 

  12. Dinca L, Scorei R (2013) Boron in human nutrition and its regulations use. J Nutr Ther 2(1):22–29

    CAS  Google Scholar 

  13. Beyer KH, Bergfeld WF, Berndt WO, Boutwell RK, Carlton WW, Hoffmann DK, Schroeter AL (1983) Final report on the safety assessment of sodium borate and boric acid. J Am Coll Toxicol 2(7):87–125

    Article  CAS  Google Scholar 

  14. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Kucukkurt I, Demirel HH, Arslan HO, Varol N, Zhu K (2018) The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food Chem Toxicol 118:745–752

    Article  CAS  PubMed  Google Scholar 

  15. Haseeb K, Wang J, Xiao K, Yang KL, Sun PP, Wu XT, Song H, Liu HZ, Zhong JM, Peng KM (2018) Effects of boron supplementation on expression of Hsp70 in the spleen of African ostrich. Biol Trace Elem Res 182(2):317–327

    Article  CAS  PubMed  Google Scholar 

  16. Sun PP, Luo Y, Wu XT, Ansari AR, Wang J, Yang KL, Xiao K, Peng KM (2016) Effects of supplemental boron on intestinal proliferation and apoptosis in African ostrich chicks. Int J Morphol 34(3):830–835

    Article  Google Scholar 

  17. Xiao K, Ansari AR, Rehman ZU, Khaliq H, Song H, Tang J, Peng KM (2015) Effect of boric acid supplementation of ostrich water on the expression of Foxn1 in thymus. Histol Histopathol 30(11):1367–1378

    CAS  PubMed  Google Scholar 

  18. Cheng J, Peng KM, Jin E, Zhang Y, Liu Y, Zhang N, Song H, Liu H, Tang Z (2011) Effect of additional boron on tibias of African ostrich chicks. Biol Trace Elem Res 144(1–3):538–549

    Article  CAS  PubMed  Google Scholar 

  19. Tang J, Zheng XT, Xiao K, Wang KL, Wang J, Wang YX, Wang K, Wang W, Lu S, Yang KL, Sun PP, Khaliq H, Zhong J, Peng KM (2016) Effect of boric acid supplementation on the expression of BDNF in African ostrich chick brain. Biol Trace Elem Res 170(1):208–215

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, Zhong JM, Sun PP, Xiao K, Tang J, Wang W, Peng KM (2015) Effect of boron administration on the morphology of ostrich chick kidney tissue. Pak Vet J 35(4):489–493

    CAS  Google Scholar 

  21. Jin E, Li S, Ren M, Hu Q, Gu Y, Li K (2017) Boron affects immune function through modulation of splenic T lymphocyte subsets, cytokine secretion, and lymphocyte proliferation and apoptosis in rats. Biol Trace Elem Res 178(2):261–275

    Article  CAS  PubMed  Google Scholar 

  22. Dessordi R, Spirlandeli AL, Zamarioli A, Volpon JB, Navarro AM (2017) Boron supplementation improves bone health of non-obese diabetic mice. J Trace Elem Med Biol 39:169–175

    Article  CAS  PubMed  Google Scholar 

  23. Hu Q, Li S, Qiao E, Tang Z, Jin E, Jin G, Gu Y (2014) Effects of boron on structure and antioxidative activities of spleen in rats. Biol Trace Elem Res 158(1):73–80

    Article  CAS  PubMed  Google Scholar 

  24. Rishi G, Subramaniam VN (2017) The liver in regulation of iron homeostasis. Am J Physiol Gastrointest Liver Physiol 313(3):157–165

    Article  Google Scholar 

  25. Juza RM, Pauli EM (2014) Clinical and surgical anatomy of the liver: a review for clinicians. Clin Anat 27(5):764–769

    Article  PubMed  Google Scholar 

  26. Ince S, Kucukkurt I, Acaroz U, Arslan-Acaroz D, Varol N (2019) Boron ameliorates arsenic-induced DNA damage, proinflammatory cytokine gene expressions, oxidant/antioxidant status, and biochemical parameters in rats. J Biochem Mol Toxicol 33(2):e22252

    Article  PubMed  Google Scholar 

  27. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Demirel HH, Kucukkurt I, Eryavuz A, Kara R, Varol N, Zhu K (2019) Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicol Res 8(2):262–269

    Article  CAS  Google Scholar 

  28. Charan J, Kantharia N (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4(4):303–306

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang W, Xiao K, Zheng X, Zhu D, Yang Z, Tang J, Sun P, Wang J, Peng K (2014) Effects of supplemental boron on growth performance and meat quality in African ostrich chicks. J Agricult Food Chem 62(46):11024–11029

    Article  CAS  Google Scholar 

  30. Zhao C, Han Y, Wang C, Ren M, Hu Q, Gu Y, Ye P, Li S, Jin E (2022) Transcriptome profiling of duodenum reveals the importance of boron supplementation in modulating immune activities in rats. Biol Trace Elem Res 200(8):3762–3773

    Article  CAS  PubMed  Google Scholar 

  31. Basoglu A, Baspinar N, Tenori L, Vignoli A, Gulersoy E (2017) Effects of boron supplementation on peripartum dairy cows’ health. Biol Trace Elem Res 179(2):218–225

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, Xiao K, Qiu W, Wang J, Li P, Peng K (2021) The immune regulatory effect of boron on ostrich chick splenic lymphocytes. Biol Trace Elem Res 199(7):2695–2706

    Article  CAS  PubMed  Google Scholar 

  33. Khaliq H, Jing W, Ke X, Ke-Li Y, Peng-Peng S, Cui L, Wei-Wei Q, Zhixin L, Hua-Zhen L, Hui S, Ju-Ming Z, Peng KM (2018) Boron affects the development of the kidney through modulation of apoptosis, antioxidant capacity, and Nrf2 pathway in the African ostrich chicks. Biol Trace Elem Res 186(1):226–237

    Article  CAS  PubMed  Google Scholar 

  34. Romero-Aguilar KS, Arciniega-Martínez IM, Farfán-García ED, Campos-Rodríguez R, Reséndiz-Albor AA, Soriano-Ursúa MA (2019) Effects of boron-containing compounds on immune responses: review and patenting trends. Expert Opin Ther Pat 29(5):339–351

    Article  CAS  PubMed  Google Scholar 

  35. Kar F, Hacıoğlu C, Göncü Y, Söğüt İ, Şenturk H, Burukoğlu Dönmez D, Kanbak G, Ay N (2021) In vivo assessment of the effect of hexagonal boron nitride nanoparticles on biochemical, histopathological, oxidant and antioxidant status. J Clust Sci 32(2):517–529

    Article  CAS  Google Scholar 

  36. Mousa DM, Ali BH (2018) Impact of boron and nano-boron on the heterophil/lymphocyte ratio and histopathological changes of liver and kidney in broiler chicken infected with Escherichia coli. Basrah J Vet Res 17(3):290–306

    Google Scholar 

  37. Ahodantin J, Bou-Nader M, Cordier C, Mégret J, Soussan P, Desdouets C, Kremsdorf D (2019) Hepatitis B virus X protein promotes DNA damage propagation through disruption of liver polyploidization and enhances hepatocellular carcinoma initiation. Oncogene 38(14):2645–2657

    Article  CAS  PubMed  Google Scholar 

  38. Ahmed AG, Riad MR (2021) Effect of zinc on lead acetate induced liver and stomach injury in adult mice: electron microscopic and biochemical study. Egyp J Anat 41(2):207–222

    Article  Google Scholar 

  39. Renu K, Chakraborty R, Myakala H, Koti R, Famurewa AC, Madhyastha H, Vellingiri B, George A, Gopalakrishnan AV (2021) Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity–a review. Chemosphere 271:129735

    Article  CAS  PubMed  Google Scholar 

  40. Srinivasan MP, Shawky NM, Kaphalia BS, Thangaraju M, Segar L (2019) Alcohol-induced ketonemia is associated with lowering of blood glucose, downregulation of gluconeogenic genes, and depletion of hepatic glycogen in type 2 diabetic db/db mice. Biochem Pharmacol 160:46–61

    Article  CAS  PubMed  Google Scholar 

  41. Saqer BT, Mudhafaral-Aubadi I, Ali AJ (2019) Study on the effect of imidacloprid in blood, liver and kidney on adult male albino mice. Biochem Cell Arch 19(2):3013–3024

    Google Scholar 

  42. Khanh DN, Vy NT, Phuong TH, Nhi PT, Thang NQ, Sy DT, Phuong NT (2022) Effects of cadmium and lead on muscle and liver glycogen levels of climbing perch (Anabas testudineus). Bull Environ Contam Toxicol 108:854–860

    Article  CAS  PubMed  Google Scholar 

  43. Tyrrell JB, Hafida S, Stemmer P, Adhami A, Leff T (2017) Lead (Pb) exposure promotes diabetes in obese rodents. J Trace Elem Med Biol 39:221–226

    Article  CAS  PubMed  Google Scholar 

  44. Jin E, Hu Q, Ren M, Jin G, Liang L, Li S (2019) Effects of selenium yeast in combination with boron on muscle growth and muscle quality in broilers. Biol Trace Elem Res 190(2):472–483

    Article  CAS  PubMed  Google Scholar 

  45. Argüelles S, Guerrero-Castilla A, Cano M, Muñoz MF, Ayala A (2019) Advantages and disadvantages of apoptosis in the aging process. Ann N Y Acad Sci 443(1):20–33

    Article  Google Scholar 

  46. Zhang J, Zheng S, Wang S, Liu Q, Xu S (2020) Cadmium-induced oxidative stress promotes apoptosis and necrosis through the regulation of the miR-216a-PI3K/AKT axis in common carp lymphocytes and antagonized by selenium. Chemosphere 258:127341

    Article  CAS  PubMed  Google Scholar 

  47. Deo P, Chow SH, Han ML, Speir M, Huang C, Schittenhelm RB, Dhital S, Emery J, Li J, Kile BT, Vince JE (2020) Mitochondrial dysfunction caused by outer membrane vesicles from Gram-negative bacteria activates intrinsic apoptosis and inflammation. Nat Microbiol 5(11):1418–1427

    Article  CAS  PubMed  Google Scholar 

  48. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8(1):1–14

    Article  Google Scholar 

  49. Mahmoodzadeh Y, Mazani M, Rezagholizadeh L (2017) Hepatoprotective effect of methanolic Tanacetum parthenium extract on CCl4-induced liver damage in rats. Toxicol Rep 4:455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Airaodion AI, Ogbuagu EO, Ekenjoku JA, Ogbuagu U, Airaodion EO (2019) Therapeutic effect of methanolic extract of Telfairia occidentalis leaves against acute ethanol-induced oxidative stress in Wistar rats. Int J BioSci Biotechnol 11(7):179–189

    Google Scholar 

  51. Shen X, Min X, Zhang S, Song C, Xiong K (2020) Effect of heavy metal contamination in the environment on antioxidant function in Wumeng semi-fine wool sheep in Southwest China. Biol Trace Elem Res 198(2):505–514

    Article  CAS  PubMed  Google Scholar 

  52. Kaneko JJ, Harvey JW, Bruss ML (2008) Clinical biochemistry of domestic animals, 6th edn. Academic Press, San Diego California, pp 889–895

    Google Scholar 

  53. Aysal H, Atasoy N, Kömüroğlu AU (2022) Protective effect of calcium fructoborate against carbon tetrachloride–induced toxicity in rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03202-w

    Article  PubMed  Google Scholar 

  54. Basoglu A, Sevinc M, Birdane FM, Boydak M (2002) Efficacy of sodium borate in the prevention of fatty liver in dairy cows. J Vet Intern Med 16(6):732–735

    Article  PubMed  Google Scholar 

  55. Eren M, Uyanik F (2007) Influence of dietary boron supplementation on some serum metabolites and egg-yolk cholesterol in laying hens. Acta Vet Hung 55(1):29–39

    Article  CAS  PubMed  Google Scholar 

  56. Elkomy AE, El-hady AMA, Elghalid OA (2015) Dietary boron supplementation and its impact on semen characteristics and physiological status of adult male rabbits. Asian J Poult Sci 9(2):85–96

    Article  CAS  Google Scholar 

  57. Pawa S, Ali S (2006) Boron ameliorates fulminant hepatic failure by counteracting the changes associated with oxidative stress. Chem-Biol Interact 160(2):89–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the College of Basic Veterinary Medicine, Huazhong Agricultural University, Wuhan, for their support in sample preparation and analysis.

Funding

This work was funded and supported by the National Natural Science Foundation of China (Nos. 31272517 and 31672504).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: study conception and design: HK and KP; data collection: HK, XK, and YK; analysis and interpretation of results: WJ, JZ, ZL, and HK; and draft manuscript preparation: HK, SP, and KP.

Corresponding author

Correspondence to Haseeb Khaliq.

Ethics declarations

Ethics Approval

The study was approved by the “Ethical Committee of Huazhong Agricultural University, Faculty of Veterinary Medicine”. All the experiments involving animals were accompanied by the “Guide for the Care and Use of Animals of Hubei Provincial Animal Public Service Center.”

Consent to Participate

All authors reviewed and approved the final manuscript.

Consent for Publication

All authors approved for this publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaliq, H., Ke, X., Keli, Y. et al. Morphological and Transcriptomic Analysis of the Supplemental Boron in the Liver of Ostrich Chicks. Biol Trace Elem Res 201, 4022–4042 (2023). https://doi.org/10.1007/s12011-022-03489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03489-9

Keywords

Navigation