Skip to main content

Advertisement

Log in

Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data of this study will be made available from the corresponding author on reasonable request.

References

  1. World Health Organization, WHO (2021). Cancer today. https://gco.iarc.fr/today/home. Accessed January 21, 2021

  2. Sommer J, Mahli A, Freese K, Schiergens TS, Kuecuekoktay FS, Teufel A, Thasler WR, Müller M (2017) Analysis of molecular mechanisms of 5-fluororacil-induced steatosis and inflammation in vitro and in mice. Oncotarget 8(8):13059–13072

    Article  PubMed  Google Scholar 

  3. Hashiguchi Y, Muro K, Saito Y (2020) Japanese society for cancer of the colon and rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol 25:1–42

    Article  PubMed  Google Scholar 

  4. Clemente A, Olias R (2017) Beneficial effects of legumes in gut health. Curr Opin Food Sci 14:32–36

    Article  Google Scholar 

  5. Gao Y, Xiao X, Zhang C, Yu W, Guo W, Zhang Z, Li Z, Feng X (2017) Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J Pineal Res 62:e12380

    Article  Google Scholar 

  6. Garousi F (2017) The essentiality of selenium for humans, animals, and plants, and the role of selenium in plant metabolism and physiology. Acta Univ Sapientiae Aliment 10(1):75–90

    CAS  Google Scholar 

  7. Razaghi A, Poorebrahim M, Sarhan D, Björnstedt M (2021) Selenium stimulates the antitumour immunity: insights to future research. Eur J Cancer 155:256–267

    Article  CAS  PubMed  Google Scholar 

  8. Guo CH, Hsia S, Chung CH, Lin YC, Shih MY, Chen PC, Li Z (2021) Nutritional supplements in combination with chemotherapy or targeted therapy reduces tumor progression in mice bearing triple-negative breast cancer. J Nutr Biochem 87:108504

    Article  CAS  PubMed  Google Scholar 

  9. dos Reis AR, El-Ramady H, Santos EF, Gratão PL, Schomburg L (2017) Overview of Selenium deficiency and toxicity worldwide: affected areas, selenium-related health issues, and case studies. In: Pilon-Smits EAH et al (eds) Selenium in plants. Plant Ecophysiology 11:209–230

  10. Lü J, Zhang J, Jiang C, Deng Y, Özten N, Bosland MC (2016) Cancer chemoprevention research with selenium in the post-SELECT era: promises and challenges. Nutr Cancer 68(1):1–17

    Article  PubMed  Google Scholar 

  11. Bertz M, Kühn K, Koeberle SC, Müller MF, Hoelzer D, Thies K, Kipp AP (2018) Selenoprotein H controls cell cycle progression and proliferation of human colorectal cancer cells. Free Radic Biol Med 127:98–107

    Article  CAS  PubMed  Google Scholar 

  12. Saeed M, Mohamed R, Amhed M (2019) The pro-oxidant, apoptotic and anti- angiogenic effects of selenium supplementation on colorectal tumors induced by 1,2- dimethylhydrazine in BALB/C Mice. Rep Biochem Mol Biol 8(3):215–226

    Google Scholar 

  13. Evans S, Jacobson G, Goodman H, Bird S, Jameson B (2020) Comparison of three oral selenium compounds in cancer patients: evaluation of differential pharmacodynamics effects in normal and malignant cells. J Trace Elem Med Biol 58:126446

    Article  CAS  PubMed  Google Scholar 

  14. Sonkusre P (2020) Specificity of biogenic selenium nanoparticles for prostate cancer therapy with reduced risk of toxicity: an in vitro and in vivo study. Front Oncol 9:1541

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Zhu W, Chen X (2020) Selenium-binding protein 1 transcriptionally activates p21 expression via p53-independent mechanism and its frequent reduction associates with poor prognosis in bladder cancer. J Transl Med 18(17):1–13

    Google Scholar 

  16. Hu T, Liang Y, Zhao G, Wu W, Li H, Guo Y (2019) Selenium biofortification and antioxidant activity in Cordyceps militaris supplied with selenate, selenite, or selenomethionine. Biol Trace Elem Res 187(2):553–561

    Article  CAS  PubMed  Google Scholar 

  17. Brzacki V, Mladenovic B, Dimic D, Jeremic L, Zivanovic D, Djukic D, Stojanovic N, Sokolovic D (2019) Comparison between the effects of selenomethionine and S-adenosylmethionine in preventing cholestasis-induced rat liver damage. Amino Acids 51:795–803

    Article  CAS  PubMed  Google Scholar 

  18. Marciel MP, Hoffmann PR (2019) Molecular mechanisms by which selenoprotein K regulates immunity and cancer. Biol Trace Elem Res 192(1):60–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li F, Li T, Han X, Zhuang H, Nie G, Xu H (2017) Nanomedicine assembled by coordinated selenium–platinum complexes can selectively induce cytotoxicity in cancer cells by targeting the glutathione antioxidant defense system. ACS Biomater Sci Eng 4(6):1954–1962

    Article  PubMed  Google Scholar 

  20. Barbanete A, Nadar RA, Degli-Esposti L, Palazzo B, Iafisco M, van den Beucken JJ, Margiotta N (2020) Platinum-loaded, selenium-doped hydroxyapatite nanoparticles selectively reduce proliferation of prostate and breast cancer cells co-cultured in the presence of stem cells. J Mater Chem 8(14):2792–2804

    Google Scholar 

  21. Kok DE, Kiemeney LA, Verhaegh GW, Schalken JA, Lin ENV, Sedelaar JP, Witjes JA, Hulsbergen-van de Kaa CA, van‘t Veer P, Kampman E (2017) A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate. Oncotarget 8:10565–10579

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abedi J, Saatloo MV, Nejati V, Hobbenaghi R, Tukmechi A, Nami Y, Khosroushahi AY (2018) Selenium-enriched Saccharomyces cerevisiae reduces the progression of colorectal cancer. Biol Trace Elem Res 185(2):424–432

    Article  CAS  PubMed  Google Scholar 

  23. Guardado-Félix D, Antunes-Ricardo M, Rocha-Pizaña MR, Martínez-Torres AM, Gutiérrez-Uribe JA, Serna Saldivar SO (2019) Chickpea (Cicer arietinum L.) sprouts containing supranutritional levels of selenium decrease tumor growth of colon cancer cells xenografted in immune-suppressed mice. J Funct Foods 56:73–84

    Google Scholar 

  24. Li W, Guo M, Liu Y, Mu W, Deng G, Li C, Qiu C (2016) Selenium induces an anti-tumor effect via inhibiting intratumoral angiogenesis in a mouse model of transplanted canine mammary tumor cells. Biol Trace Elem Res 171(2):371–379

    Article  CAS  PubMed  Google Scholar 

  25. Rajkumar K, Mvs S, Koganti S, Burgula S (2020) Selenium nanoparticles synthesized using Pseudomonas stutzeri (MH191156) show antiproliferative and anti-angiogenic activity against aervical cancer cells. Int J Nanomed 15:4523–4540

    Article  CAS  Google Scholar 

  26. Gandin V, Khalkar P, Braude J, Fernandes AP (2018) Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 127:80–97

    Article  CAS  PubMed  Google Scholar 

  27. Radomska D, Czarnomysy R, Radomski D, Bielawski K (2021) Selenium compounds as novel potential anticancer agents. Int J Mol Sci 22(3):1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Avery JC, Hoffmann PR (2018) Selenium, selenoproteins, and immunity. Nutrients 10(9):1203

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fontagne-Dicharry S, Veron V, Larroquet L, Godin S, Wischhusen P, Aguirre P, Kaushik SJ (2020) Effect of selenium sources in plant-based diets on antioxidant status and oxidative stress-related parameters in rainbow trout juveniles under chronic stress exposure. Aquaculture 529:735684

    Article  CAS  Google Scholar 

  30. Bizerea TO, Dezsi SG, Marginean O, Stroescu R, Rogobete A, Bizerea-Spiridon O, Ilie C (2018) The link between selenium, oxidative stress, and pregnancy-induced hypertensive disorders. Clin Lab 64(10):1593–1610

    CAS  PubMed  Google Scholar 

  31. Tamires P, Thais A, Adriani D, Ângela C, Marina M, Thais C, João-Paulo T, Vanessa M (2020) Brazil nut prevents oxidative DNA damage in type 2 diabetes patients. Drug Chem Toxicol 18:1–7

    Google Scholar 

  32. Farzad R, Kuhn DD, Smith SA, O’Keefe SF, Hines IS, Bushman TJ, Stevens AM (2021) Effects of selenium-enriched prebiotic on the growth performance, innate immune response, oxidative enzyme activity and microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 531:735980

    Article  CAS  Google Scholar 

  33. Yamashita Y, Yamashita M, Iida H (2013) Selenium content in seafood in Japan. Nutrients 5(2):388–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zwierzchowski GA, Ametaj BN (2018) Minerals and heavy metals in the whole raw milk of dairy cows from different management systems and countries of origin: a meta-analytical study. J Agric Food Chem 66(26):6877–6888

    Article  CAS  PubMed  Google Scholar 

  35. Pilarczyk B, Tomza-Marciniak A, Pilarczyk R, Kuba J, Hendzel D, Udała J, Tarasewicz Z (2019) Eggs as a source of selenium in the human diet. J Food Compost Anal 78:19–23

    Article  CAS  Google Scholar 

  36. Food and Agriculture Organization FAO (2001) Chapter 15: selenium. Last modified 2001. http://www.fao.org/3/Y2809E/y2809e0l.html. Accessed May 15, 2021

  37. Mousaie A (2021) Dietary supranutritional supplementation of selenium-enriched yeast improves feed efficiency and blood antioxidant status of growing lambs reared under warm environmental condition. Trop Anim Health Prod 53(1):1–7

    Article  Google Scholar 

  38. Dai H, Wei S, Twardowska I (2020) Biofortification of soybean (Glycine max L) with Se and Zn and enhancing its physiological functions by spiking these elements to soil during flowering phase. Sci Total Environ 740:139648

    Article  CAS  PubMed  Google Scholar 

  39. Golob A, Novak T, Maršić NK, Šircelj H, Stibilj V, Jerše A, Germ M (2020) Biofortification with selenium and iodine changes morphological properties of Brassica oleracea L. var. gongylodes and increases their contents in tubers. Plant Physiol Biochem 150:234–243

    Article  CAS  PubMed  Google Scholar 

  40. Ge J, Guo K, Zhang C, Talukder M, Lv M, Li JY, Li JL (2021) Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. Sci Total Environ 773:145442

    Article  CAS  PubMed  Google Scholar 

  41. Guardado-Félix D, Serna-Saldivar SO, Cuevas-Rodríguez EO, Jacobo-Velázquez DA, Gutierréz-Uribe JA (2017) Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea. Food Chem 226:69–74

    Article  PubMed  Google Scholar 

  42. Serrano-Sandoval SN, Guardado-Félix D, Gutiérrez-Uribe JA (2019) Changes in digestibility of proteins from chickpeas (Cicer arietinum L.) germinated in presence of selenium and antioxidant capacity of hydrolysates. Food Chem 285:290–295

    Article  CAS  PubMed  Google Scholar 

  43. Serrano-Sandoval SN, Guardado-Félix D, Gutiérrez-Uribe JA (2021) Deglycosilation of isoflavones in selenized germinated chickpea flours due to convection drying. LWT Food Sci Technol 153:112417

    Article  Google Scholar 

  44. Ei H, Zheng HT, Farooq MU (2020) Impact of selenium, zinc and their interaction on key enzymes, grain yield, selenium, zinc concentrations, and seedling vigor of biofortified rice. Environ Sci Pollut Res 27:16940–16949

    Article  CAS  Google Scholar 

  45. Islam MZ, Park BJ, Kang HM, Lee YT (2020) Influence of selenium biofortification on the bioactive compounds and antioxidant activity of wheat microgreen extract. Food Chem 309:125763

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Zhang Z, Liu H, Wang D, Wang J, Deng Z, Li T, He Y, Yang Y, Zhong S (2020) Physicochemical characterization and antitumor activity in vitro of a selenium polysaccharide from Pleurotus ostreatus. Int J Biol Macromol 165:2934–2946

    Article  CAS  PubMed  Google Scholar 

  47. de Brito MP, Tavanti RFR, Tavanti TR, Santos EF, Jalal A, Dos Reis AR (2021) Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants. Ecotoxicol Environ Saf 209:111772

    Article  Google Scholar 

  48. Guardado-Félix D, Lazo-Vélez MA, Pérez-Carrillo E, Panata-Saquicili DE, Serna-Saldívar SO (2020) Effect of partial replacement of wheat flour with sprouted chickpea flours with or without selenium on physicochemical, sensory, antioxidant and protein quality of yeast-leavened breads. LWT 129:109517

    Article  Google Scholar 

  49. Lazo-Vélez MA, Chávez-Santoscoy A, Serna-Saldivar SO (2015) Selenium-enriched breads and their benefits in human nutrition and health as affected by agronomic, milling, and baking factors. Cereal Chem 92(2):134–144

    Article  Google Scholar 

  50. Ligowe IS, Young SD, Ander EL, Kabambe V, Chilimba ADC, Bailey EH, Nalivata PC (2020) Selenium biofortification of crops on a Malawi Alfisol under conservation agriculture. Geoderma 369:114315

    Article  CAS  Google Scholar 

  51. Lima W, Gavin C, Christina W, Ali FE, Mehdawi C, Elizabeth AH (2019) Selenium accumulation, speciation and localization in Brazil nuts (Bertholletia excelsa H.B.K). Plants 8:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ralston NV, Kaneko JJ, Raymond LJ (2019) Selenium health benefit values provide a reliable index of seafood benefits vs. risks. J Trace Elem Med Biol 55:50–57

    Article  CAS  PubMed  Google Scholar 

  53. Tangjaidee P, Xiang J, Yin H, Wen X, Quek SY (2019) Selenium, fibre, and protein enrichment of rice product: extrusion variables and product properties. Food Qual Saf 3(1):40–51

    Article  CAS  Google Scholar 

  54. Guardado-Félix D, Pérez-Carrillo E, Heredia-Olea E, Serna-Saldivar SO (2022) Comparison of regular and selenium-enriched tortillas produced from sprouted corn kernels. Plant Foods Hum Nutr 77:226–232

    Article  PubMed  Google Scholar 

  55. Takahashi K, Suzuki N, Ogra Y (2018) Effect of administration route and dose on metabolism of nine bioselenocompounds. J Trace Elem Med Biol 49:113–118

    Article  CAS  PubMed  Google Scholar 

  56. Pick D, Degen C, Leiterer M, Jahreis G, Einax JW (2013) Transport of selenium species in Caco-2 cells: analytical approach employing the Ussing chamber technique and HPLC-ICP-MS. Microchem J 110:8–14

    Article  CAS  Google Scholar 

  57. Gammelgaard B, Rasmussen LH, Gabel-Jensen C, Steffansen B (2011) Estimating intestinal absorption of inorganic and organic selenium compounds by in vitro flux and biotransformation studies in Caco-2 Cells and ICP-MS Detection. Biol Trace Elem Res 145(2):248–256

    Article  PubMed  Google Scholar 

  58. Leblondel G, Mauras Y, Cailleux A, Allain P (2001) Transport measurements across caco-2 monolayers of different organic and inorganic selenium: influence of sulfur compounds. Biol Trace Elem Res 83(3):191–206

    Article  CAS  PubMed  Google Scholar 

  59. Nickel A, Kottra G, Schmidt G, Danier J, Hofmann T, Daniel H (2009) Characteristics of transport of selenoamino acids by epithelial amino acid transporters. Chem Biol Interact 177(3):234–241

    Article  CAS  PubMed  Google Scholar 

  60. Jäger T, Drexler H, Göen T (2014) Human metabolism and renal excretion of selenium compounds after oral ingestion of sodium selenate dependent on trimethylselenium ion (TMSe) status. Arch Toxicol 90(1):149–158

    Article  PubMed  Google Scholar 

  61. Jäger T, Drexler H, Göen T (2015) Human metabolism and renal excretion of selenium compounds after oral ingestion of sodium selenite and selenized yeast dependent on the trimethylselenium ion (TMSe) status. Arch Toxicol 90:1069–1080

    Article  PubMed  Google Scholar 

  62. Di Dato C, Gianfrilli D, Greco E, Astolfi M, Canepari S, Lenzi A, Isidori A, Giannetta E (2017) Profiling of selenium absorption and accumulation in healthy subjects after prolonged l-selenomethionine supplementation. J Endocrinol Investig 40(11):1183–1190

    Article  Google Scholar 

  63. Wastney ME, Combs GF, Canfield WK, Taylor PR, Patterson KY, Hill AD, Moler JE, Patterson BH (2011) A human model of selenium that integrates metabolism from selenite and selenomethionine. J Nutr 141(4):708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seale LA, Ha HY, Hashimoto AC, Berry MJ (2018) Relationship between selenoprotein P and selenocysteine lyase: insights into selenium metabolism. Free Radic Biol Med 127:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zeng X, Zhang X, Fan B, Li Y, Jia X, Huang W, Liu J, Liu G (2019) Pharmacokinetics of sodium selenite in rat plasma and tissues after intragastric administration. Biol Trace Elem Res 119:494–501

    Google Scholar 

  66. Akahoshi N, Anan Y, Hashimoto Y, Tokoro N, Mizuno R, Hayashi S, Yamamoto S, Shimada K, Kamata S, Ishii I (2019) Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression of most selenoproteins in mice. J Nutr Biochem 69:120–129

    Article  CAS  PubMed  Google Scholar 

  67. Ha HY, Alfulaij N, Berry MJ, Seale LA (2019) From selenium absorption to selenoprotein degradation. Biol Trace Elem Res 192:26–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lazard M, Dauplais M, Blanquet S, Plateau P (2015) Trans-sulfuration pathway seleno-amino acids are mediators of selenomethionine toxicity in Saccharomyces cerevisiae. J biol Chem 290(17):10741–10750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brozmanová J, Mániková D, Vlčková V, Chovanec M (2010) Selenium: a double-edged sword for defense and offence in cancer. Arch Toxicol 84(12):919–938

    Article  PubMed  Google Scholar 

  70. Tobe R, Mihara H (2018) Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis. Biochim Biophys Acta Gen Subj 1835 11:2433–2440

    Article  Google Scholar 

  71. Takahashi K, Ogra Y (2020) Identification of the biliary selenium metabolite and the biological significance of selenium enterohepatic circulation. Metallomics 12:241–248

    Article  PubMed  Google Scholar 

  72. Kokarnig S, Tsirigotaki A, Wiesenhofer T, Lackner V, Francesconi KA, Pergantis SA, Kuehnelt D (2015) Concurrent quantitative HPLC–mass spectrometry profiling of small selenium species in human serum and urine after ingestion of selenium supplements. J Trace Elem Med Biol 29:83–90

    Article  CAS  PubMed  Google Scholar 

  73. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  74. Silvestrini A, Mordente A, Martino G, Bruno C, Vergani E, Meucci E (2020) The role of selenium in oxidative stress and in nonthyroidal illness syndrome (NTIS): an overview. Curr Med Chem 27(3):423–449

    Article  CAS  PubMed  Google Scholar 

  75. Bănescu C, Iancu M, Trifa AP, Cândea M, Benedek-Lazar E, Moldovan VG, Dobreanu M (2016) From six gene polymorphisms of the antioxidant system, only GPX Pro198 Leu and GSTP1 Ile105Val modulate the risk of acute myeloid leukemia. Oxid Med Cell Longev 8:1–10

    Article  Google Scholar 

  76. Choi JY, Neuhouser ML, Barnett M, Hudson M, Kristal AR, Thornquist M (2007) Polymorphisms in oxidative stress-related genes are not associated with prostate cancer risk in heavy smokers. Cancer Epidemiol Biomarkers Prev 16:1115–1120

    Article  CAS  PubMed  Google Scholar 

  77. Erdem O, Eken A, Akay C, Arsova-Sarafinovska Z, Matevska N, Suturkova L, Erten K, Özgök Y, Dimovski A, Sayal A, Aydin A (2012) Association of GPX1 polymorphism, GPX activity and prostate cancer risk. HET 31:24–31

    CAS  Google Scholar 

  78. Qian Q, Wang Q, Zhan P, Peng L, Wei SZ, Shi Y, Song Y (2010) The role of matrix metalloproteinase 2 on the survival of patients with non-small cell lung cancer: a systematic review with meta-analysis. Clin Cancer Investig J 28:661–669

    Article  Google Scholar 

  79. Hiller E, Besselt K, Deubel S, Brigelius-Flohé R, Kipp AP (2015) GPx2 induction is mediated through STAT transcription factors during acute colitis. Inflamm Bowel Dis 21(9):2078–2089

    Article  PubMed  Google Scholar 

  80. Zhang X, Zheng Z, Yingji S, Kim H, Jin R, Renshu L, Lee DY, RohYang MR (2014) Downregulation of glutathione peroxidase 3 is associated with lymph node metastasis and prognosis in cervical cancer. Oncol Rep 31:2587–2592

    Article  CAS  PubMed  Google Scholar 

  81. Yu YP, Yu G, Tseng G (2007) Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res 67:8043–8050

    Article  CAS  PubMed  Google Scholar 

  82. Saga Y, Ohwada M, Suzuki M (2008) Glutathione peroxidase 3 is a candidate mechanism of anticancer drug resistance of ovarian clear cell adenocarcinoma. Oncol Rep 20:1299–1303

    CAS  PubMed  Google Scholar 

  83. Jia Y, Dai J, Zeng Z (2020) Potential relationship between the selenoproteome and cancer. Mol Oncol 13(6):83–89

    CAS  Google Scholar 

  84. Guerriero E, Capone F, Accardo M, Sorice A, Costantini M, Colonna G, Castello G, Costantini S (2015) GPX4 and GPX7 over-expression in human hepatocellular carcinoma tissues. Eur J Histochem 59:2535–2540

    Article  Google Scholar 

  85. Zhang X, Sui S, Wang L, Li H, Zhang L, Xu S, Zheng X (2019) Inhibition of tumor propellant glutathione peroxidase 4 induces ferroptosis in cancer cells and enhances the anticancer effect of cisplatin. J Cell Physiol 235(4):3425–3437

    Article  PubMed  Google Scholar 

  86. Carlson BA, Yoo MH, Tobe R, Mueller C, Naranjo-Suarez S, Hoffmann VJ, Gladyshev VN, Hatfield DL (2012) Thioredoxin reductase 1 protects against chemically induced hepatocarcinogenesis via control of cellular redox homeostasis. Carcinogenesis 33:1806–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Varlamova EV, Cheremushkina IV (2016) Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 39:76–85

    Article  PubMed  Google Scholar 

  88. Hinrichsen S, Planer-Friedrich B (2016) Cytotoxic activity of selenosulfate versus selenite in tumor cells depends on cell line and presence of amino acids. Environ Sci Pollut Res 23(9):8349–8357

    Article  CAS  Google Scholar 

  89. Arodin L, Wallenberg M, Jawad R, Danielsson O, Björnsted M (2019) The cell culture medium affects growth, phenotype expression, and the response to selenium cytotoxicity in A549 and HepG2 cells. Antioxidants 8(5):130

    Article  Google Scholar 

  90. Wang Y, Fang W, Huang Y, Hu F, Wancai Y, Xiong B (2015) Reduction of selenium-binding protein 1 sensitizes cancer cells to selenite via elevating extracellular glutathione: a novel mechanism of cancer-specific cytotoxicity of selenite. Free Radic Biol Med 79:186–196

    Article  CAS  PubMed  Google Scholar 

  91. Řezáčová K, Čáňová K, Bezrouk A, Rudolf E (2016) Selenite induces DNA damage and specific mitochondrial degeneration in human bladder cancer cells. Toxicol In Vitro 32:105–114

    Article  PubMed  Google Scholar 

  92. Elhodaky M, Diamond AM (2018) Selenium-binding protein 1 in human health and disease. Int J Mol Sci 19(11):3437

    Article  PubMed  PubMed Central  Google Scholar 

  93. Díaz N (2018) Design, synthesis and biological evaluation of novel methyl selenoesters as antiproliferative and cytotoxic agents. Tesis doctoral, Universidad de Navarra

  94. Maiyo F, Singh M (2017) Selenium nanoparticles: potential in cancer gene and drug delivery. Nanomed J 12(9):1075–1089

    Article  CAS  Google Scholar 

  95. Menon S, Ks SD, Santhiya R, Rajeshkumar S, Kumar V (2018) Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf B 170:280–292

    Article  CAS  Google Scholar 

  96. Zhao G, Wu X, Chen P, Zhang L, Yang CS, Zhang J (2018) Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radic Biol Med 126:55–66

    Article  CAS  PubMed  Google Scholar 

  97. Sun L, Zhang J, Yang QSY, Liu Y, Wang Q, Han F, Huang Z (2017) Synergistic effects of SAM and selenium compounds on proliferation, migration and adhesion of HeLa cells. Anticancer Res 37:4433–4444

    CAS  PubMed  Google Scholar 

  98. Ahsan A, Liu Z, Su R, Liu C, Liao X, Su M (2022) Potential chemotherapeutic effect of selenium for improved canceration of esophageal cancer. Int J Mol Sci. 23(10):5509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Marciel M, Khadka V, Deng Y, Kilicaslan P, Pham A, Bertino P (2018) Selenoprotein K deficiency inhibits melanoma by reducing calcium flux required for tumor growth and metastasis. Oncotarget 9(17):13407–13422

    Article  PubMed  PubMed Central  Google Scholar 

  100. Li M, Cheng W, Nie T, Lai H, Hu X, Luo J, Li F, Li H (2018) Selenoprotein K mediates the proliferation, migration, and invasion of human choriocarcinoma cells by negatively regulating human chorionic gonadotropin expression via ERK, p38 MAPK, and Akt signaling pathway. Biol Trace Elem Res 184(1):47–59

    Article  CAS  PubMed  Google Scholar 

  101. Zhang S, Li F, Younes M, Liu H, Chen C, Yao Q (2013) Reduced selenium-binding protein 1 in breast cancer correlates with poor survival and resistance to the anti-proliferative effects of selenium. PLoS ONE 8(5):e63702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Elhodaky M, Hong LK, Kadkol S, Diamond AM (2020) Selenium-binding protein 1 alters energy metabolism in prostate cancer cells. Prostate 80(12):962–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun S, Feng Y, Zhang Y, Ji H, Yu J, Liu A (2017) Antitumor and immunoregulatory activities of seleno-β-lactoglobulin on S180 tumor-bearing mice. Mol 23(1):46

    Article  Google Scholar 

  104. Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89(3):289–317

    Article  CAS  PubMed  Google Scholar 

  105. Harmanci D, Erbayraktar Z, Sayin O, Guner GA (2017) In vitro effects of selenium on human glioblastoma multiforme cell lines: a preliminary study. Acta Clin Croat 56:48–57

    Article  Google Scholar 

  106. Lobb R, Jacobson G, Cursons R, Jameson M (2018) The interaction of selenium with chemotherapy and radiation on normal and malignant human mononuclear blood cells. Int J Mol Sci 19(10):3167

    Article  PubMed  PubMed Central  Google Scholar 

  107. Güzel KGU, Nazıroğlu M, Ceyhan D (2020) Bisphenol A-induced cell proliferation and mitochondrial oxidative stress are diminished via modulation of TRPV1 channel in estrogen positive breast cancer cell by selenium treatment. Biol Trace Elem Res 198:118–130

    Article  PubMed  Google Scholar 

  108. Ertilav K, Nazıroğlu M, Ataizi ZS, Braidy N (2019) Selenium enhances the apoptotic efficacy of docetaxel through activation of TRPM2 channel in DBTRG glioblastoma cells. Neurotox Res 35(4):797–808

    Article  CAS  PubMed  Google Scholar 

  109. Sakallı E, Nazıroğlu M, Çiğ B, Övey IS, Aslan-Koşar P (2016) Selenium potentiates the anticancer effect of cisplatin against oxidative stress and calcium ion signaling-induced intracellular toxicity in MCF-7 breast cancer cells: involvement of the TRPV1 channel. J Recept Signal Transduct Res 37(1):84–93

    Article  Google Scholar 

  110. Zhao YY, Liu W, Wang D, Wu J, Shi Liu A (2018) Apoptosis and autophagy induction of Seleno-β-lactoglobulin (Se-β-Lg) on hepatocellular carcinoma cells lines. J Funct Foods 49:412–423

    Article  CAS  Google Scholar 

  111. Xu X, Feng Y, Chen X, Wang Q, Meng T, Liu A (2019) Antitumor effects of seleno-β-lactoglobulin on human breast cancer MCF-7 and MDA-MB-231 cells in vitro. Toxicol In vitro 61:104607

    Article  CAS  PubMed  Google Scholar 

  112. Zhang ZY, Zhang H, Liu D, Wang Z, Deng T, Li Y, He Y, Zhong S (2021) A water-soluble selenium-enriched polysaccharide produced by Pleurotus ostreatus: purification, characterization, antioxidant and antitumor activities in vitro. Int J Biol Macromol 168:356–370

    Article  CAS  PubMed  Google Scholar 

  113. Sun N, Teng A, Zhao Y, Liu H, Tu J, Jia Q, Wang Q (2020) Immunological and anticancer activities of seleno-ovalbumin (Se-OVA) on H22-bearing mice. Int J Biol Macromol 163:657–665

    Article  CAS  PubMed  Google Scholar 

  114. Yuan C, Wang C, Wang J, Kumar V, Anwar F, Xiao F, Mushtaq G, Liu Y, Amjad K, Yuan D (2016) Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana. Nutr Res 36(11):1243–1254

    Article  CAS  PubMed  Google Scholar 

  115. Shashni B, Nishikawa Y, Nagasaki Y (2021) Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials 269:120645

    Article  CAS  PubMed  Google Scholar 

  116. Cai Z, Dong L, Song C, Zhang Y, Zhu C, Zhang Y, Li W (2017) Methylseleninic acid provided at nutritional selenium levels inhibits angiogenesis by down-regulating integrin β3 signaling. Sci Rep 7(1):1–13

    Article  Google Scholar 

  117. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100(6):2555–2566

    Article  CAS  PubMed  Google Scholar 

  118. Jiang Z, Chi J, Li H, Wang Y, Liu W, Han B (2020) Effect of chitosan oligosaccharide-conjugated selenium on improving immune function and blocking gastric cancer growth. Eur J Pharmacol 891:173673

    Article  PubMed  Google Scholar 

  119. Al-Otaibi AM, Al-Gebaly AS, Almeer R, Albasher G, Al-Qahtani WS, Abdel Moneim AE (2022) Potential of green-synthesized selenium nanoparticles using apigenin in human breast cancer MCF-7 cells. Environ Sci Pollut Res 1–10.

  120. Mi XJ, Choi HS, Perumalsamy H, Shanmugam R, Thangavelu L, Balusamy SR, Kim YJ (2022) Biosynthesis and cytotoxic effect of silymarin-functionalized selenium nanoparticles induced autophagy mediated cellular apoptosis via downregulation of PI3K/Akt/mTOR pathway in gastric cancer. Phytomedicine 99:154014

    Article  CAS  PubMed  Google Scholar 

  121. Yazdi M, Mahdavi M, Kheradmand E, Shahverdi A (2012) The preventive oral supplementation of a selenium nanoparticle-enriched probiotic increases the immune response and lifespan of 4T1 breast cancer bearing mice. Arzneimittelforschung 62(11):525–531

    Article  CAS  PubMed  Google Scholar 

  122. Huang Y, He L, Liu W (2013) Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials 34(29):7106–7116

    Article  CAS  PubMed  Google Scholar 

  123. Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T (2015) Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomed J 11(4):947–958

    Article  CAS  Google Scholar 

  124. Park SO, Yoo YB, Baek KJ, Yang J, Choi PC, Lee JH, Lee KR, Park KS (2015) Effects of combination therapy of docetaxel with selenium on the human breast cancer cell lines MDA-MB-231 and MCF-7. Ann Surg Treakt Res 88(2):55

    Article  Google Scholar 

  125. Wu F, Cao W, Xu H, Zhu M, Wang J, Ke X (2017) Treatment with a selenium-platinum compound induced T-cell acute lymphoblastic leukemia/lymphoma cells apoptosis through the mitochondrial signaling pathway. Oncol Lett 13(3):1702–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wu B, Ge J, Zixiong-Zhang Z, Huang C, Li X, Tan X, Fang X, Sun J (2019) Combination of sodium selenite and doxorubicin prodrug Ac-Phe-Lys-PABC-ADM affects gastric cancer cell apoptosis in xenografted mice. Biomed Res Int 2019:1–8

    Google Scholar 

  127. Guler Y, Ovey I-S (2020) Selenium enhances the TRPM2 mediated effect of paclitaxel on human breast cancer cells. Ann Med Res 27(4):1150–1156

    Article  Google Scholar 

  128. Wei WQ, Abnet CC, Qiao YL, Dawsey SM, Dong ZW, Sun XD, Fan JH, Gunter EW, Taylor PR, Mark SD (2004) Prospective study of serum selenium concentrations and esophageal and gastric cardia cancer, heart disease, stroke, and total death. Am J Clin Nutr 79:80–85

    Article  CAS  PubMed  Google Scholar 

  129. Nomura AM, Lee J, Stemmermann GN, Combs GF Jr (2000) Serum selenium and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 9:883–887

    CAS  PubMed  Google Scholar 

  130. Levander OA, Alfthan G, Arvilommi H, Gref CG, Huttunen JK, Kataja M, Koivistoinen P, Pikkarainen J (1983) Bioavailability of selenium to Finnish men as assessed by platelet glutathione peroxidise activity and other blood parameters. Am J Clin Nutr 37:887–897

    Article  CAS  PubMed  Google Scholar 

  131. Narod SA, Huzarski T, Jakubowska A (2019) Gronwald J, Cybulski C, Oszurek O, Debniak T, Jawoeska-Bieniek K, Lener M, Bialkowska K, Sukiennicki G, Muszynska M, Marcianiak W, Sun P, Kotsopoulos J, Lubinski J (2019) Serum selenium level and cancer risk: a nested case-control study. Hered Cancer Clin Pract 17:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Duffi eld-Lillico AJ, Reid ME, Turnbull BW, Combs G, Slate E, Fischbach L, MArshall J, Clarck LC (2002) Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol Biomark Prev 11:630–639

    CAS  Google Scholar 

  133. Lippman SM, Klein EA, Goodman PJ et al (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E Cancer Prevention Trial (SELECT). JAMA 301:39–51

    Article  CAS  PubMed  Google Scholar 

  134. Lim YW, Chen-Harris H, Mayba O, Lianoglou S, Wuster A, Bhangale T, Khan Z, Mariathasan S, Daemen A, Reeder J, Haverty P, Forrest W, Brauer M, Mellman I, Albert ML (2018) Germline genetic polymorphisms influence tumor gene expression and immune cell infiltration. Proc Natl Acad Sci 15(50):E11701–E11710

    Google Scholar 

  135. Deng N, Zhou H, Fan H, Yuan Y (2017) Single nucleotide polymorphisms and cancer susceptibility. Oncotarget 8(66):110635–110649

    Article  PubMed  PubMed Central  Google Scholar 

  136. Méplan C (2017) Association of single nucleotide polymorphisms in selenoprotein genes with cancer risk. In: Chavatte L (eds) Selenoproteins. Methods Mol Biol 1661:313–324

  137. Mao H, Cui R, Wang X (2015) Association analysis of selenoprotein S polymorphisms in chinese han with susceptibility to gastric cancer. Int J Clin Exp Med 8(7):10993–10999

    PubMed  PubMed Central  Google Scholar 

  138. Li J, Zhu Y, Zhou Y, Jiang H, Chen Z, Lu B (2020) The SELS rs34713741 Polymorphism is associated with susceptibility to colorectal cancer and gastric cancer: a meta-analysis. Genet Test Mol Biomarkers 24(12):835–844

    Article  CAS  PubMed  Google Scholar 

  139. Amini G, Salehi R, Asghar A, Kazemi M, Khosravi S (2019) Evaluation of SEPP1 and selenoprotein S gene polymorphisms (rs7579 and rs34713741) in relation to colorectal cancer susceptibility in subset of Iranian population: a case–control study. Adv Biomed 8:47

    Article  CAS  Google Scholar 

  140. Mohammaddoust S, Salehi Z, Saedi H (2017) SEPP1 and SEP15 gene polymorphisms and susceptibility to breast cancer. Br J Biomed Sci 75(1):36–39

    Article  PubMed  Google Scholar 

  141. Méplan C, Crosley LK, Nicol F, Beckett GJ, Howie AF, Hill KE, Horgan G, Mathers JC, Arthur JR, Hesketh JE (2007) Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J 21:3063–3074

    Article  PubMed  Google Scholar 

  142. Mao J, Vanderlelie JJ, Perkins AV, Redman CWG, Ahmadi KR, Rayman MP (2016) Genetic polymorphisms that affect selenium status and response to selenium supplementation in United Kingdom pregnant women. Am J Clin Nutr 103(1):100–106

    Article  CAS  PubMed  Google Scholar 

  143. Fedirko V, Jenab M, Méplan C, Jones JS, Zhu W, Schomburg L, Siddiq A, Hybsier S, Overvad K (2019) Association of selenoprotein and selenium pathway genotypes with risk of colorectal cancer and interaction with selenium status. Nutrients 11(4):935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hrdina J, Banning A, Kipp A, Loh G, Blaut M, Brigelius-Flohé R (2009) The gastrointestinal microbiota affects the selenium status and selenoprotein expression in mice. J Nutr Biochem 20(8):638–648

    Article  CAS  PubMed  Google Scholar 

  145. Callejón-Leblic B, Selma-Royo M, Collado MC, Abril N, García-Barrera T (2021) Impact of antibiotic-induced depletion of gut microbiota and selenium supplementation on plasma selenoproteome and metal homeostasis in a mice model. J Agric Food Chem. 69(27):7652–7662

    Article  PubMed  PubMed Central  Google Scholar 

  146. Zhai Q, Cen S, Li P, Tian F, Zhao J, Zhang H, Chen W (2018) Effects of dietary selenium supplementation on intestinal barrier and immune responses associated with its modulation of gut microbiota. Environ Sci Technol Lett. 5(12):724–30

    Article  CAS  Google Scholar 

  147. Ferreira RLU, Sena-Evangelista KCM, De Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC (2021) Selenium in human health and gut microflora: bioavailability of selenocompounds and relationship with diseases. Front Nutr 4(8):685317

    Article  Google Scholar 

  148. Porto BAA, Monteiro CF, Souza ELS, Leocádio PCL, Alvarez-Leite JI, Genoroso SV, Cardoso VN, Almeida-Leite CM, Santos DA, Santos JRA (2019) Treatment with selenium-enriched Saccharomyces cerevisiae UFMG A-905 partially ameliorates mucositis induced by 5-fluorouracil in mice. Cancer Chemother Pharmacol 84(1):117–126

    Article  CAS  PubMed  Google Scholar 

  149. Yazdi MH, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi AR (2013) Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. DARU J Pharm Sci 21(1):33–39

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Nutriomics y Tecnologías Emergentes Research Chair Funds from Tecnológico de Monterrey, the Consejo Superior de Investigaciones Científicas through the i-Link Program (LINKB20023), and by the Spanish Ministry of Science and Innovation through the PID2019-106071RB-I00 project. The scholarships of Juan Pablo Dávila Vega (CVU-1006860), Ana Carolina Gastélum Hernández (CVU-703109), and Sayra Nayely Serrano Sandoval (CVU-737636) were provided by Consejo Nacional de Ciencia y Tecnología (CONACyT).

Author information

Authors and Affiliations

Authors

Contributions

Dávila Vega and Gastelum Hernández wrote the main manuscript text. Serrano-Sandoval and Guardado-Félix structured the main topics, wrote, and revised the manuscript; Serna-Saldívar, Gutiérrez-Uribe, Milán-Carrillo, and Martínez-Cuesta reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniela Guardado-Félix.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dávila-Vega, J.P., Gastelum-Hernández, A.C., Serrano-Sandoval, S.N. et al. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 201, 3626–3644 (2023). https://doi.org/10.1007/s12011-022-03467-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03467-1

Keywords

Navigation