Skip to main content
Log in

Study on the Mechanism of Arsenic-Induced Lung Injury Based on SWATH Proteomics Technology

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chronic arsenic poisoning is a global health problem that affects millions of people, and studies have found that long-term ingestion of arsenic-containing compounds can lead to lung damage, but the exact mechanism is unknown. In this study, Sprague–Dawley (SD) rats were used as the research object, and the proteomic analysis method based on sequential window acquisition of all theoretical fragment ions (SWATH) was used to detect the changes in the expression levels of related proteins in the lung tissue of arsenic-exposed rats, and to explore the mechanism of arsenic compound-induced lung injury. The results showed that arsenic exposure resulted in the abnormal expression of collagen type III and proteins involved in metabolic, immune, and cellular processes, leading to the dysfunction of important pathways associated with these proteins, resulting in lung injury. It suggested that the underlying mechanism of arsenic-induced lung injury may be related to oxidative stress, immune injury, cell junction, and collagen type III. This result provides a new research idea for revealing the mechanism of lung injury caused by arsenic exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abdul KS, Jayasinghe SS, Chandana EP et al (2015) Arsenic and human health effects: a review. Environ Toxicol Pharmacol 40:828–846. https://doi.org/10.1016/j.etap.2015.09.016

    Article  CAS  PubMed  Google Scholar 

  2. Stice S, Liu G, Matulis S et al (2016) Determination of multiple human arsenic metabolites employing high performance liquid chromatography inductively coupled plasma mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 1009–1010:55–65. https://doi.org/10.1016/j.jchromb.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  3. Kim YJ, Kim JM (2015) Arsenic toxicity in male reproduction and development. Dev Reprod 19:167–80. https://doi.org/10.12717/DR.2015.19.4.167

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zampella G, Neupane KP, De Gioia L, Pecoraro VL (2012) The importance of stereochemically active lone pairs for influencing Pb(II) and As(III) protein binding. Chemistry 18:2040–2050. https://doi.org/10.1002/chem.201102786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yao M, Zeng Q, Luo P et al (2021) Assessing the risk of coal-burning arsenic-induced liver damage: a population-based study on hair arsenic and cumulative arsenic. Environ Sci Pollut Res Int 28:50489–50499. https://doi.org/10.1007/s11356-021-14273-y

    Article  CAS  PubMed  Google Scholar 

  6. Yu G, Sun D, Zheng Y (2007) Health effects of exposure to natural arsenic in groundwater and coal in China: an overview of occurrence. Environ Health Perspect 115:636–642. https://doi.org/10.1289/ehp.9268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smedley PL, Kinniburgh D (2002) A review of the source, behaviour and distribution ofarsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  8. Rasool A, Farooqi A, Masood S, Hussain K (2015) Arsenic in groundwater and its health risk assessment in drinking water of Mailsi, Punjab, Pakistan. Hum Ecol Risk Assess Int J 22:187–202. https://doi.org/10.1080/10807039.2015.1056295

    Article  CAS  Google Scholar 

  9. Liao N, Seto E, Eskenazi B et al (2018) A comprehensive review of arsenic exposure and risk from rice and a risk assessment among a cohort of adolescents in Kunming, China. Int J Environ Res Public Health 15:2191. https://doi.org/10.3390/ijerph15102191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shri M, Singh PK, Kidwai M et al (2019) Recent advances in arsenic metabolism in plants: current status, challenges and highlighted biotechnological intervention to reduce grain arsenic in rice. Metallomics 11:519–532. https://doi.org/10.1039/c8mt00320c

    Article  CAS  PubMed  Google Scholar 

  11. Contreras-Acuña M, García-Barrera T, García-Sevillano MA, Gómez-Ariza JL (2014) Arsenic metabolites in human serum and urine after seafood (Anemonia sulcata) consumption and bioaccessibility assessment using liquid chromatography coupled to inorganic and organic mass spectrometry. Microchem J 112:56–64. https://doi.org/10.1016/j.microc.2013.09.007

    Article  CAS  Google Scholar 

  12. Wang W, Wang Q, Zou Z et al (2020) Human arsenic exposure and lung function impairment in coal-burning areas in Guizhou. China Ecotoxicol Environ Saf 190:110174. https://doi.org/10.1016/j.ecoenv.2020.110174

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y, Zhao Y, Xu W et al (2013) Involvement of HIF-2alpha-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells. Toxicol Appl Pharmacol 272:542–550. https://doi.org/10.1016/j.taap.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  14. Rahman MS, Misbahudddin M, Chowdhury NJA (2009) Corn extracts lower tissue arsenic level in rat. Bangladesh Med Res Counc Bull 35:21–25. https://doi.org/10.3329/bmrcb.v35i1.2533

    Article  PubMed  Google Scholar 

  15. Argos M, Parvez F, Rahman M et al (2014) Arsenic and lung disease mortality in Bangladeshi adults. Epidemiology 25:536–543. https://doi.org/10.1097/EDE.0000000000000106

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dutta K, Prasad P, Sinha D (2015) Chronic low level arsenic exposure evokes inflammatory responses and DNA damage. Int J Hyg Environ Health 218:564–574. https://doi.org/10.1016/j.ijheh.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  17. Gao S, Duan X, Wang X et al (2013) Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food Chem Toxicol 59:739–747. https://doi.org/10.1016/j.fct.2013.07.032

    Article  CAS  PubMed  Google Scholar 

  18. Nardone A, Ferreccio C, Acevedo J et al (2017) The impact of BMI on non-malignant respiratory symptoms and lung function in arsenic exposed adults of Northern Chile. Environ Res 158:710–719. https://doi.org/10.1016/j.envres.2017.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lantz RC, Lynch BJ, Boitano S et al (2007) Pulmonary biomarkers based on alterations in protein expression after exposure to arsenic. Environ Health Perspect 115:586–591. https://doi.org/10.1289/ehp.9611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evans CD, LaDow K, Schumann BL et al (2004) Effect of arsenic on benzo[a]pyrene DNA adduct levels in mouse skin and lung. Carcinogenesis 25:493–497. https://doi.org/10.1093/carcin/bgg199

    Article  CAS  PubMed  Google Scholar 

  21. Gulyas HLM (1990) Depression of alveolar macrophage hydrogen peroxide and superoxide anion release by mineral dusts- correlation with antimony, lead, and arsenic contents. Environ Res 51:218–229

    Article  CAS  PubMed  Google Scholar 

  22. Braccia C, Liessi N, Armirotti A (2021) Quantification of changes in protein expression using SWATH proteomics. Methods Mol Biol 2361:75–94. https://doi.org/10.1007/978-1-0716-1641-3_5

    Article  PubMed  Google Scholar 

  23. Wu H, Wang D, Zheng Q, Xu Z (2022) Integrating SWATH-MS proteomics and transcriptome analysis to preliminarily identify three DEGs as biomarkers for proliferative diabetic retinopathy. Proteomics Clin Appl 16:e2100016. https://doi.org/10.1002/prca.202100016

    Article  CAS  PubMed  Google Scholar 

  24. Braccia C, Tomati V, Caci E et al (2019) SWATH label-free proteomics for cystic fibrosis research. J Cyst Fibros 18:501–506. https://doi.org/10.1016/j.jcf.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  25. Krasny L, Bland P, Kogata N et al (2018) SWATH mass spectrometry as a tool for quantitative profiling of the matrisome. J Proteomics 189:11–22. https://doi.org/10.1016/j.jprot.2018.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang J, Hu T, Wang Y, et al (2022) Investigating the neurotoxic impacts of arsenic and the neuroprotective effects of dictyophora polysaccharide using SWATH-MS-based proteomics. Molecules 27 https://doi.org/10.3390/molecules27051495

  27. Ahrman E, Hallgren O, Malmstrom L et al (2018) Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. J Proteomics 189:23–33. https://doi.org/10.1016/j.jprot.2018.02.027

    Article  CAS  PubMed  Google Scholar 

  28. Lin J, Zhang K, Cao X et al (2022) iTRAQ-based proteomics analysis of rat cerebral cortex exposed to valproic acid before delivery. ACS Chem Neurosci 13:648–663. https://doi.org/10.1021/acschemneuro.1c00800

    Article  CAS  PubMed  Google Scholar 

  29. Levin Y, Schwarz E, Wang L et al (2007) Label-free LC-MS/MS quantitative proteomics for large-scale biomarker discovery in complex samples. J Sep Sci 30:2198–2203. https://doi.org/10.1002/jssc.200700189

    Article  CAS  PubMed  Google Scholar 

  30. Lee CHYH (2016) Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis. Front Biosci (Schol Ed) 8:312–320

    Article  PubMed  Google Scholar 

  31. Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:101674. https://doi.org/10.1016/j.redox.2020.101674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rigoulet M, Bouchez CL, Paumard P et al (2020) Cell energy metabolism: An update. Biochim Biophys Acta Bioenerg 1861:148276. https://doi.org/10.1016/j.bbabio.2020.148276

    Article  CAS  PubMed  Google Scholar 

  33. Stueckle TA, Lu Y, Davis ME et al (2012) Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol 261:204–216. https://doi.org/10.1016/j.taap.2012.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hong Y, Piao F, Zhao Y et al (2009) Subchronic exposure to arsenic decreased Sdha expression in the brain of mice. Neurotoxicology 30:538–543. https://doi.org/10.1016/j.neuro.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  35. Udensi UK, Tackett AJ, Byrum S et al (2014) Proteomics-based identification of differentially abundant proteins from human keratinocytes exposed to arsenic trioxide. J Proteomics Bioinform 7:166–178. https://doi.org/10.4172/jpb.1000317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee CH, Wu SB, Hong CH et al (2013) Involvement of mtDNA damage elicited by oxidative stress in the arsenical skin cancers. J Invest Dermatol 133:1890–1900. https://doi.org/10.1038/jid.2013.55

    Article  CAS  PubMed  Google Scholar 

  37. Wei M, Guo F, Rui D et al (2018) Alleviation of arsenic-induced pulmonary oxidative damage by GSPE as shown during in vivo and in vitro experiments. Biol Trace Elem Res 183:80–91. https://doi.org/10.1007/s12011-017-1111-2

    Article  CAS  PubMed  Google Scholar 

  38. Chen F, Luo Y, Li C et al (2021) Sub-chronic low-dose arsenic in rice exposure induces gut microbiome perturbations in mice. Ecotoxicol Environ Saf 227:112934. https://doi.org/10.1016/j.ecoenv.2021.112934

    Article  CAS  PubMed  Google Scholar 

  39. van Steen ACI, van der Meer WJ, Hoefer IE, van Buul JD (2020) Actin remodelling of the endothelium during transendothelial migration of leukocytes. Atherosclerosis 315:102–110. https://doi.org/10.1016/j.atherosclerosis.2020.06.004

    Article  CAS  PubMed  Google Scholar 

  40. Hou YC, Hsu CS, Yeh CL et al (2005) Effects of glutamine on adhesion molecule expression and leukocyte transmigration in endothelial cells exposed to arsenic. J Nutr Biochem 16:700–704. https://doi.org/10.1016/j.jnutbio.2005.04.007

    Article  CAS  PubMed  Google Scholar 

  41. van Buul JD, Hordijk PL (2004) Signaling in leukocyte transendothelial migration. Arterioscler Thromb Vasc Biol 24:824–833. https://doi.org/10.1161/01.ATV.0000122854.76267.5c

    Article  CAS  PubMed  Google Scholar 

  42. Ren Z, Ding T, Zuo Z et al (2020) Regulation of MAVS expression and signaling function in the antiviral innate immune response. Front Immunol 11:1030. https://doi.org/10.3389/fimmu.2020.01030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoneyama M, Kikuchi M, Matsumoto K et al (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851–2858. https://doi.org/10.4049/jimmunol.175.5.2851

    Article  CAS  PubMed  Google Scholar 

  44. Wu B, Hur S (2015) How RIG-I like receptors activate MAVS. Curr Opin Virol 12:91–98. https://doi.org/10.1016/j.coviro.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Graf RP, Keller N, Barbero S, Stupack D (2014) Caspase-8 as a regulator of tumor cell motility. Curr Mol Med 14:246–254. https://doi.org/10.2174/1566524014666140128111951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zou J, Xia H, Zhang C et al (2021) Casp8 acts through A20 to inhibit PD-L1 expression: The mechanism and its implication in immunotherapy. Cancer Sci 112:2664–2678. https://doi.org/10.1111/cas.14932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li J, Zhao L, Zhang Y et al (2017) Imbalanced immune responses involving inflammatory molecules and immune-related pathways in the lung of acute and subchronic arsenic-exposed mice. Environ Res 159:381–393. https://doi.org/10.1016/j.envres.2017.08.036

    Article  CAS  PubMed  Google Scholar 

  48. Krendel M, Mooseker MS (2005) Myosins: tails (and Heads) of Functional diversity. Physiology (Bethesda) 20:239–251. https://doi.org/10.1152/physiol.00014.2005

    Article  CAS  PubMed  Google Scholar 

  49. Jalagadugula G, Mao G, Kaur G et al (2010) Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency. Blood 116:6037–6045. https://doi.org/10.1182/blood-2010-06-289850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peckham M (2016) How myosin organization of the actin cytoskeleton contributes to the cancer phenotype. Biochem Soc Trans 44:1026–1034. https://doi.org/10.1042/BST20160034

    Article  CAS  PubMed  Google Scholar 

  51. Svitkina T (2018) The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol 10 https://doi.org/10.1101/cshperspect.a018267

  52. Gates J, Peifer M (2005) Can 1000 reviews be wrong? Actin, alpha-Catenin, and adherens junctions. Cell 123:769–772. https://doi.org/10.1016/j.cell.2005.11.009

    Article  CAS  PubMed  Google Scholar 

  53. Kozul CD, Hampton TH, Davey JC et al (2009) Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung. Environ Health Perspect 117:1108–1115. https://doi.org/10.1289/ehp.0800199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hartsock A, Nelson WJ (2008) Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta (BBA) - Biomembr 1778:660–669. https://doi.org/10.1016/j.bbamem.2007.07.012

    Article  CAS  Google Scholar 

  55. Martin TA, Jiang WG (2009) Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta 1788:872–891. https://doi.org/10.1016/j.bbamem.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  56. Nakanishi H, Takai Y (2004) Roles of nectins in cell adhesion, migration and polarization. Biol Chem 385:885–892. https://doi.org/10.1515/BC.2004.116

    Article  CAS  PubMed  Google Scholar 

  57. Han SP, Yap AS (2013) An alpha-catenin deja vu. Nat Cell Biol 15:238–239. https://doi.org/10.1038/ncb2700

    Article  CAS  PubMed  Google Scholar 

  58. Takeichi M (2018) Multiple functions of alpha-catenin beyond cell adhesion regulation. Curr Opin Cell Biol 54:24–29. https://doi.org/10.1016/j.ceb.2018.02.014

    Article  CAS  PubMed  Google Scholar 

  59. Vasioukhin V, Bauer C, Degenstein L, Wise B (2001) Hyperproliferation and defects in epithelial polarity upon conditional ablation of alpha-catenin in skin. Cell 104:605–617

    Article  CAS  PubMed  Google Scholar 

  60. Mishra YG, Manavathi B (2021) Focal adhesion dynamics in cellular function and disease. Cell Signal 85:110046. https://doi.org/10.1016/j.cellsig.2021.110046

    Article  CAS  PubMed  Google Scholar 

  61. Oakes PW, Gardel ML (2014) Stressing the limits of focal adhesion mechanosensitivity. Curr Opin Cell Biol 30:68–73. https://doi.org/10.1016/j.ceb.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yancy SL, Shelden EA, Gilmont RR, Welsh MJ (2005) Sodium arsenite exposure alters cell migration, focal adhesion localization and decreases tyrosine phosphorylation of focal adhesion kinase in H9C2 myoblasts. Toxicol Sci 84:278–286. https://doi.org/10.1093/toxsci/kfi032

    Article  CAS  PubMed  Google Scholar 

  63. Kielgast F, Schmidt H, Braubach P et al (2016) Glucocorticoids regulate tight junction permeability of lung epithelia by modulating claudin 8. Am J Respir Cell Mol Biol 54:707–717

    Article  CAS  PubMed  Google Scholar 

  64. Foronjy R, Okada Y, Cole R, D’Armiento J (2003) Progressive adult-onset emphysema in transgenic mice expressing human MMP-1 in the lung. Am J Physiol Lung Cell Mol Physiol 284:L727–L737. https://doi.org/10.1152/ajplung.00349.2002

    Article  CAS  PubMed  Google Scholar 

  65. Mercer RRCJ (1990) Spatial distribution of collagen and elastin fibers in the lungs. J Appl Physiol (1985) 69:756–765. https://doi.org/10.1152/jappl.1990.69.2.756

    Article  CAS  PubMed  Google Scholar 

  66. Shiomi TOY (2003) Emphysematous changes are caused by degradation of type III collagen in transgenic mice expressing MMP-1. Exp Lung Res 29:1–15. https://doi.org/10.1080/01902140390116526

    Article  CAS  PubMed  Google Scholar 

  67. Petrick JS, Blachere FM, Selmin O, Lantz RC (2009) Inorganic arsenic as a developmental toxicant: in utero exposure and alterations in the developing rat lungs. Mol Nutr Food Res 53:583–591. https://doi.org/10.1002/mnfr.200800019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to instrument analysis center of Shenzhen University and Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions.

Funding

This work was supported by the National Natural Science Foundations of China (U1812403-6–2-4, 82173642), the Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (2021SHIBS0003).

Author information

Authors and Affiliations

Authors

Contributions

LMS and PL conceived the experiment. YW designed the experiment. JZ, XLZ, HJZ, XSC, TH, JL, XXT, XLC, YXJ, XY, HBZ conducted experiments and analyzed data. LMS, PL, CXS, HJZ helped revise the manuscript. All authors have read and agree to the published version of the manuscript.

Corresponding authors

Correspondence to Peng Luo or Liming Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics Approval

All experimental procedures are in line with the guidelines for animal use and ethical care, and have been approved by the ethics committee of experimental animals of Guizhou Medical University. The quality certificate number is scxk (Guizhou) 2018–0001.

Consent for Publication

All authors agree to publish.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Peng Luo and Liming Shen were co-corresponding authors.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, J., Zhang, X. et al. Study on the Mechanism of Arsenic-Induced Lung Injury Based on SWATH Proteomics Technology. Biol Trace Elem Res 201, 3882–3902 (2023). https://doi.org/10.1007/s12011-022-03466-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03466-2

Keywords

Navigation