Skip to main content
Log in

Yttrium Oxide Nanoparticles Attenuate L-Arginine Induced Chronic Pancreatitis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

In this work, we tested the efficacy of yttrium oxide nanoparticles (NY), a promising antioxidant and anti-inflammatory agent, in L-arginine (L-Arg) induced chronic pancreatitis (CP) model. The nanoparticles were characterized using multiple techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (pXRD), and Energy dispersive X-ray analysis (EDX). The rats were divided into three groups: normal control, L-Arg control, L-Arg + NY (1 mg/kg). We probed the mechanistic effects of the NY by ELISA, multiplex analysis of TGF-β pathway and inflammatory cytokines and immunoblotting. NY treatment significantly reduced pancreatic oxidative-nitrosative stress. In addition, NY intervention also reduced inflammatory cytokines and chemokines resulting in the inhibition of fibrosis signaling. Further, NY treatment suppressed the TGF-β signaling and epithelial-mesenchymal transition (EMT). We conclude that NY shows potential antioxidant, anti-inflammatory, and anti-fibrotic effects against CP and associated fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Available on request.

References

  1. Witt H, Apte MV, Keim V, Wilson JS (2007) Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy. Gastroenterology 132(4):1557–1573

    Article  CAS  PubMed  Google Scholar 

  2. Mehal WZ, Iredale J, Friedman SL (2011) Scraping fibrosis: expressway to the core of fibrosis. Nat Med 17(5):552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18(7):1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schoenberg MH, Birk D, Beger HG (1995) Oxidative stress in acute and chronic pancreatitis. Am J Clin Nutr 62(6):1306S-1314S

    Article  CAS  PubMed  Google Scholar 

  5. Giannoni E, Parri M, Chiarugi P (2012) EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal 16(11):1248–1263

    Article  CAS  PubMed  Google Scholar 

  6. Matsumura N, Ochi K, Ichimura M, Mizushima T, Harada H, Harada M (2001) Study on free radicals and pancreatic fibrosis—pancreatic fibrosis induced by repeated injections of superoxide dismutase inhibitor. Pancreas 22(1):53–57

    Article  CAS  PubMed  Google Scholar 

  7. Stevens T, Conwell DL, Zuccaro G (2004) Pathogenesis of chronic pancreatitis: an evidence-based review of past theories and recent developments. Am J Gastroenterol 99(11):2256

    Article  CAS  PubMed  Google Scholar 

  8. McCarroll JA, Phillips PA, Santucci N, Pirola RC, Wilson J, Apte M (2006) Vitamin A inhibits pancreatic stellate cell activation: implications for treatment of pancreatic fibrosis. Gut 55(1):79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaster R (2004) Molecular regulation of pancreatic stellate cell function. Mol Cancer 3(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haber PS, Keogh GW, Apte MV, Moran CS, Stewart NL, Crawford DH, Pirola RC, McCaughan GW, Ramm GA, Wilson JS (1999) Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am J Pathol 155(4):1087–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Masamune A, Watanabe T, Kikuta K, Shimosegawa T (2009) Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 7(11):S48–S54

    Article  CAS  PubMed  Google Scholar 

  12. Kim BY, Rutka JT, Chan WC (2010) Nanomedicine. N Engl J Med 363(25):2434–2443

    Article  CAS  PubMed  Google Scholar 

  13. Prasad LK, O’Mary H, Cui Z (2015) Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine 10(13):2063–2074

    Article  CAS  PubMed  Google Scholar 

  14. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discovery 14(1):45

    Article  CAS  PubMed  Google Scholar 

  15. Dacrory S, Hashem AH, Hasanin M (2021) Synthesis of cellulose based amino acid functionalized nano-biocomplex: characterization, antifungal activity, molecular docking and hemocompatibility. Environ Nanotechnol Monit Manag 15:100453

    CAS  Google Scholar 

  16. Shehabeldine A, El-Hamshary H, Hasanin M, El-Faham A, Al-Sahly M (2021) Enhancing the antifungal activity of griseofulvin by incorporation a green biopolymer-based nanocomposite. Polymers 13(4):542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abdelaziz AM, Dacrory S, Hashem AH, Attia MS, Hasanin M, Fouda HM, Kamel S, ElSaied H (2021) Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatal Agric Biotechnol 35:102083

    Article  CAS  Google Scholar 

  18. Schubert D, Dargusch R, Raitano J, Chan S-W (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342(1):86–91

    Article  CAS  PubMed  Google Scholar 

  19. Mitra RN, Merwin MJ, Han Z, Conley SM, Al-Ubaidi MR, Naash MI (2014) Yttrium oxide nanoparticles prevent photoreceptor death in a light-damage model of retinal degeneration. Free Radical Biol Med 75:140–148

    Article  CAS  Google Scholar 

  20. Godugu C, Kumari P, Khurana A (2018) Nanoyttria attenuates isoproterenol-induced cardiac injury. Nanomedicine 13(23):2961–2980

    Article  CAS  PubMed  Google Scholar 

  21. Hosseini A, Baeeri M, Rahimifard M, Navaei-Nigjeh M, Mohammadirad A, Pourkhalili N, Hassani S, Kamali M, Abdollahi M (2013) Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum Exp Toxicol 32(5):544–553

    Article  CAS  PubMed  Google Scholar 

  22. Khurana A, Anchi P, Allawadhi P, Kumar V, Sayed N, Packirisamy G, Godugu C (2019) Yttrium oxide nanoparticles reduce the severity of acute pancreatitis caused by cerulein hyperstimulation. Nanomedicine 18:54–65

    Article  CAS  PubMed  Google Scholar 

  23. Fredstrom SB, Jessurun J, Gallaher DD (2009) Pancreatitis induced in rats by repetitive administration of L-arginine. Pancreas 38(3):344–345

    Article  PubMed  Google Scholar 

  24. Tiruveedi VL, Bale S, Khurana A, Godugu C (2018) Withaferin A, A novel compound of Indian ginseng (Withania somnifera), ameliorates C erulein-induced acute pancreatitis: possible role of oxidative stress and inflammation. Phytother Res 32(12):2586–2596

    Article  CAS  PubMed  Google Scholar 

  25. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  26. Karkale S, Khurana A, Saifi MA, Godugu C, Talla V (2018) Oropharyngeal administration of silica in Swiss mice: a robust and reproducible model of occupational pulmonary fibrosis. Pulm Pharmacol Ther 51:32–40

    Article  CAS  PubMed  Google Scholar 

  27. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA)-General Subjects 582(1):67–78

    Article  CAS  PubMed  Google Scholar 

  28. Khurana A, Anchi P, Allawadhi P, Kumar V, Sayed N, Packirisamy G, Godugu C (2019) Superoxide dismutase mimetic nanoceria restrains cerulein induced acute pancreatitis. Nanomedicine 14(14):1805–1825

    Article  CAS  PubMed  Google Scholar 

  29. Tekula S, Khurana A, Anchi P, Godugu C (2018) Withaferin-A attenuates multiple low doses of Streptozotocin (MLD-STZ) induced type 1 diabetes. Biomed Pharmacother 106:1428–1440

    Article  CAS  PubMed  Google Scholar 

  30. Woessner J Jr (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93(2):440–447

    Article  CAS  PubMed  Google Scholar 

  31. Karkale S, Khurana A, Saifi MA, Godugu C, Talla V (2018) Andrographolide ameliorates silica induced pulmonary fibrosis. Int Immunopharmacol 62:191–202

    Article  CAS  PubMed  Google Scholar 

  32. Saifi MA, Sangomla S, Khurana A, Godugu C (2019) Protective effect of nanoceria on cisplatin-induced nephrotoxicity by amelioration of oxidative stress and pro-inflammatory mechanisms. Biol Trace Elem Res 189(1):145–156

    Article  CAS  PubMed  Google Scholar 

  33. Bansod S, Khurana A, Godugu C (2019) Cerulein-induced chronic pancreatitis in Swiss albino mice: an improved short-term model for pharmacological screening. J Pharmacol Toxicol Methods 96:46–55

    Article  CAS  PubMed  Google Scholar 

  34. Tan P, Wang A, Chen H, Du Y, Qian B, Shi H, Zhang Y, Xia X, Fu W (2019) SPOP inhibits mice pancreatic stellate cell activation by promoting FADD degradation in cerulein-induced chronic pancreatitis. Exp Cell Res 384(1):111606

    Article  CAS  PubMed  Google Scholar 

  35. Khurana A, Sikha MS, Ramesh K, Venkatesh P, Godugu C (2019) Modulation of cerulein‐induced pancreatic inflammation by hydroalcoholic extract of curry leaf (Murraya koenigii). Phytother Res 33(5):1510–25

  36. Kirkegård J, Mortensen FV, Cronin-Fenton D (2017) Chronic pancreatitis and pancreatic cancer risk: a systematic review and meta-analysis. Am J Gastroenterol 112(9):1366

    Article  PubMed  Google Scholar 

  37. Majumder S, Chari ST (2016) Chronic pancreatitis. The Lancet 387(10031):1957–1966

    Article  Google Scholar 

  38. Barry K (2018) Chronic pancreatitis: diagnosis and treatment. Am Fam Physician 97(6):385–93

  39. González AM, Garcia T, Samper E, Rickmann M, Vaquero EC, Molero X (2011) Assessment of the protective effects of oral tocotrienols in arginine chronic-like pancreatitis. Am J Physiol - Gastrointest Liver Physiol 301(5):G846–G855

    Article  PubMed  Google Scholar 

  40. Bhardwaj P, Garg PK, Maulik SK, Saraya A, Tandon RK, Acharya SK (2009) A randomized controlled trial of antioxidant supplementation for pain relief in patients with chronic pancreatitis. Gastroenterology 136(1):149-159. e2

    Article  PubMed  Google Scholar 

  41. Kirk GR, White JS, McKie L, Stevenson M, Young I, Clements WB, Rowlands BJ (2006) Combined antioxidant therapy reduces pain and improves quality of life in chronic pancreatitis. J Gastrointest Surg 10(4):499–503

    Article  PubMed  Google Scholar 

  42. Xia S, Ni Y, Zhou Q, Xiang H, Sui H, Shang D (2019) Emodin attenuates severe acute pancreatitis via antioxidant and anti-inflammatory activity. Inflammation 42(6):2129–2138

    Article  CAS  PubMed  Google Scholar 

  43. Bansod S, Doijad N, Godugu C (2020) Berberine attenuates severity of chronic pancreatitis and fibrosis via AMPK-mediated inhibition of TGF-β1/Smad signaling and M2 polarization. Toxicol Appl Pharmacol 403:115162

    Article  CAS  PubMed  Google Scholar 

  44. Bansod S, Saifi MA, Khurana A, Godugu C (2020) Nimbolide abrogates cerulein-induced chronic pancreatitis by modulating β-catenin/Smad in a sirtuin-dependent way. Pharmacol Res 156:104756

    Article  CAS  PubMed  Google Scholar 

  45. Klöppel G, Detlefsen S, Feyerabend B (2004) Fibrosis of the pancreas: the initial tissue damage and the resulting pattern. Virchows Arch 445(1):1–8

    Article  PubMed  Google Scholar 

  46. Werner J, Rivera J, Fernandez-del Castillo C, Lewandrowski K, Adrie C, Rattner DW, Warshaw AL (1997) Differing roles of nitric oxide in the pathogenesis of acute edematous versus necrotizing pancreatitis. Surgery 121(1):23–30

    Article  CAS  PubMed  Google Scholar 

  47. Dítě P, Hermanová M, Trna J, Novotný I, Růžička M, Liberda M, Bártková A (2012) The role of chronic inflammation: chronic pancreatitis as a risk factor of pancreatic cancer. Dig Dis 30(3):277–283

    Article  PubMed  Google Scholar 

  48. Saurer L, Reber P, Schaffner T, Büchler MW, Buri C, Kappeler A, Walz A, Friess H, Mueller C (2000) Differential expression of chemokines in normal pancreas and in chronic pancreatitis. Gastroenterology 118(2):356–367

    Article  CAS  PubMed  Google Scholar 

  49. Apte M, Haber P, Darby S, Rodgers S, McCaughan G, Korsten M, Pirola R, Wilson J (1999) Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis. Gut 44(4):534–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mews P, Phillips P, Fahmy R, Korsten M, Pirola R, Wilson J, Apte M (2002) Pancreatic stellate cells respond to inflammatory cytokines: potential role in chronic pancreatitis. Gut 50(4):535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kikuta K, Masamune A, Watanabe T, Ariga H, Itoh H, Hamada S, Satoh K, Egawa S, Unno M, Shimosegawa T (2010) Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun 403(3–4):380–384

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AK performed experiments, collected and analyzed data, and wrote the manuscript. MAS helped in the experimental part and data collection. CG designed the study, supervised the work, and corrected the manuscript.

Corresponding author

Correspondence to Chandraiah Godugu.

Ethics declarations

Ethics Approval

The present work complies to all the ethical practices. The experimental procedures were performed by following the ethical guidelines provided by CPCSEA (Committee for the Purpose of Control and Supervision of Experiments on Animals). The manuscript is the authors’ own original work, which has not been previously published elsewhere and the paper is not currently being considered for publication elsewhere. The manuscript reflects the authors’ own research and analysis in a truthful and complete manner.

Conflicts of Interest

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 531 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, A., Saifi, M.A. & Godugu, C. Yttrium Oxide Nanoparticles Attenuate L-Arginine Induced Chronic Pancreatitis. Biol Trace Elem Res 201, 3404–3417 (2023). https://doi.org/10.1007/s12011-022-03446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03446-6

Keywords

Navigation