Skip to main content

Advertisement

Log in

Assessment of Tissue Oxidative Stress, Antioxidant Parameters, and Zinc and Copper Levels in Patients with Breast Cancer

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Breast cancer is a multifactorial disease, and among the many factors which are involved in the onset, progression, and invasion of the disease, oxidative stress plays a significant role. The concentration and activity of enzymatic antioxidants are proportional to the concentration of trace elements, and the concentration of trace elements is often deficient in malignancies. Therefore, in the present study, we studied the tissue levels of oxidative stress, antioxidant status, zinc (Zn), and copper (Cu) in breast cancer patients. Tissue samples were collected from 40 patients with breast cancer and 40 tumor margin tissue as a control group. All subjects gave their informed consent. The tissue samples were measured for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), total antioxidants capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), malondialdehyde (MDA), Zn, and Cu. Data of all biochemical parameters of two groups were statistically analyzed by SPSS software, t test, and GraphPad Prism. Concentrations of MDA, TOS, and OSI in tumor tissue were significantly higher than tumor margin tissue, but the level of TAC and CAT, SOD, and GPX activities was significantly reduced in tumor tissue (p<0.05). It was found that the concentrations of Zn and Cu in breast cancer patients were higher than tumor margin tissue. Patients with breast cancer have a rise in oxidative stress indicators and a decrease in antioxidant stress markers. Since oxidative stress is a significant contributor to the development and progression of breast cancer, more research might lead to a more effective method of breast cancer treatment. Considering the dual role of oxidative stress in cancer, which can both cause survival and adaptation, and the death of cancer cells, and with more information, it can be used to manage the treatment and destruction of cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573

    Article  CAS  PubMed  Google Scholar 

  2. Kundaktepe BP, Sozer V, Durmus S, Kocael PC, Kundaktepe FO, Papila C et al (2021) The evaluation of oxidative stress parameters in breast and colon cancer. Medicine 100(11):e25104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manoochehri J, Abdollahi A, Tajik A (2018) Epidemiological study of breast tumors in Iranian patients. Acad Res Int 9(1):35–38

    Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  5. Pantelimon I, Gales LN, Zgura A, Serbanescu GL, Georgescu DE, Nita I et al (2021) Analysis of oxidative stress in patients with breast cancer and obesity. Ann Med Health Sci Res 11(6):1578–1585

    Google Scholar 

  6. Nita M, Grzybowski A (2016) The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults. Oxidative Med Cell Longev 3164734:23. https://doi.org/10.1155/2016/3164734

    Article  CAS  Google Scholar 

  7. Quinlan CL, Goncalves RL, Hey-Mogensen M, Yadava N, Bunik VI, Brand MD (2014) The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J Biol Chem 289(12):8312–8325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zalewska-Ziob M, Adamek B, Kasperczyk J, Romuk E, Hudziec E, Chwalińska E et al (2019) Activity of antioxidant enzymes in the tumor and adjacent noncancerous tissues of non-small-cell lung cancer. Oxidative Med Cell Longev 2019:1–9. https://doi.org/10.1155/2019/2901840

    Article  CAS  Google Scholar 

  9. Lymperaki E, Makedou K, Iliadis S, Vagdatli E (2015) Effects of acute cigarette smoking on total blood count and markers of oxidative stress in active and passive smokers. Hippokratia 19(4):293–297

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev 2014:1–31. https://doi.org/10.1155/2014/360438

    Article  CAS  Google Scholar 

  11. Al-Mayali HM, Kadhem WM (2021) Evaluation of some antioxidants and malondialdehyde (MDA) in Iraqi women infected with breast cancer and toxoplasmosis in Al-Diwaniyah and Al-Najaf provinces. Mater Today: Proc 236(7):1–3. https://doi.org/10.1016/j.matpr.2021.07.236

    Article  CAS  Google Scholar 

  12. Aguilar TAF, Navarro BCH, Pérez JAM (2016) Endogenous antioxidants: a review of their role in oxidative stress. A master regulator of oxidative stress-the transcription factor nrf2 3-20

  13. Mak S, Newton GE (2001) The oxidative stress hypothesis of congestive heart failure: radical thoughts. Chest 120(6):2035–2046

    Article  CAS  PubMed  Google Scholar 

  14. Gomes EC, Silva AN (2012) Oliveira MRd(2012) Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxidative Med Cell Longev:1–12. https://doi.org/10.1155/2012/756132

  15. Aldini G, Yeum K-J, Niki E, Russell RM(2011) Biomarkers for antioxidant defense and oxidative damage: principles and practical applications: John Wiley & Sons

  16. Shrivastava A, Mishra SP, Pradhan S, Choudhary S, Singla S, Zahra K et al (2021) An assessment of serum oxidative stress and antioxidant parameters in patients undergoing treatment for cervical cancer. Free Radic Biol Med 167:29–35

    Article  CAS  PubMed  Google Scholar 

  17. Kanafchian M, Mahjoub S, Esmaeilzadeh S, Rahsepar M, Mosapour A (2018) Status of serum selenium and zinc in patients with the polycystic ovary syndrome with and without insulin resistance. Middle East Fertil Soc J 23(3):241–245

    Article  Google Scholar 

  18. Omar MEA-S, Eman RY, Hafez FH (2011) The antioxidant status of the plasma in patients with breast cancer undergoing chemotherapy. Open J Mol Integrative Physiol 3:8342–8347

    Google Scholar 

  19. Ahmadi N, Mahjoub S, Hosseini RH, TaherKhani M, Moslemi D (2018) Alterations in serum levels of trace element in patients with breast cancer before and after chemotherapy. Caspian J Internal Med 9(2):134–139

    Google Scholar 

  20. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12):1103–1111

    Article  CAS  PubMed  Google Scholar 

  21. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  CAS  PubMed  Google Scholar 

  22. Mehdi M, Menon M, Seyoum N, Bekele M, Tigeneh W, Seifu D (2018) Blood and tissue enzymatic activities of GDH and LDH, index of glutathione, and oxidative stress among breast cancer patients attending Referral Hospitals of Addis Ababa, Ethiopia: hospital-based comparative cross-sectional study. Oxidative Med Cell Longev. https://doi.org/10.1155/2018/6039453

  23. Tuma DJ (2002) Role of malondialdehyde-acetaldehyde adducts in liver injury. Free Radic Biol Med 32(4):303–308

    Article  CAS  PubMed  Google Scholar 

  24. Rao S, Kumari DS (2012) Changes in plasma lipid peroxidation and the antioxidant system in women with breast cancer. Int J Basic Appl Sci 1(4):429–438

    CAS  Google Scholar 

  25. Czerska M, Mikołajewska K, Zieliński M, Gromadzińska J, Wąsowicz W (2015) Today’s Oxidative Stress Markers Medycyna Pracy 66(3):393–405

    PubMed  Google Scholar 

  26. Hauck AK, Bernlohr DA (2016) Oxidative stress and lipotoxicity. J Lipid Res 57(11):1976–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rajendra C, Kedari G (2020) Role of antioxidant levels and lipid peroxidationin patients with breast cancer. Biomedicine 40(2):170–174

    Google Scholar 

  28. Wang M, Dhingra K, Hittelman WN, Liehr JG, De Andrade M, Li D (1996) Lipid peroxidation-induced putative malondialdehyde-DNA adducts in human breast tissues. Cancer Epidemiol, Biomarkers Prev: Public Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol 5(9):705–710

    CAS  Google Scholar 

  29. Kumaraguruparan R, Subapriya R, Viswanathan P, Nagini S (2002) Tissue lipid peroxidation and antioxidant status in patients with adenocarcinoma of the breast. Clin Chim Acta 325(1-2):165–170

    Article  CAS  PubMed  Google Scholar 

  30. Upadhya S, Upadhya S, Mohan SK, Vanajakshamma K, Kunder M, Mathias S (2004) Oxidant-antioxidant status in colorectal cancer patients—before and after treatment. Indian J Clin Biochem 19(2):80–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jabir FA, Shaker AS (2020) Roles of Superoxide dismutase (SOD), Malondialdehyde (MDA), 8-iso-prostaglandinF2α (8-iso-PGF2α) as oxidative stress in development and progression of Brest cancer in Iraqi females patients. Al-Qadisiyah J Pure Sci 25(1):1–4

    Article  Google Scholar 

  32. El-Soud MRA, Hewala T (2019) The clinical significance of serum oxidative stress biomarkers in breast cancer females. Med Res J 4:1–7

    Article  Google Scholar 

  33. Didžiapetrienė J, Kazbarienė B, Tikuišis R, Dulskas A, Dabkevičienė D, Lukosevičienė V et al (2020) Oxidant/antioxidant status of breast cancer patients in pre-and post-operative periods. Medicina 56(2):70–79

    Article  PubMed  PubMed Central  Google Scholar 

  34. Erten Şener D, Gönenç A, Akıncı M, Torun M (2007) Lipid peroxidation and total antioxidant status in patients with breast cancer. Cell Biochem Function: Cell Biochem Modul Active Agents Dis 25(4):377–382

    Article  Google Scholar 

  35. Zowczak-Drabarczyk MM, Murawa D, Kaczmarek L, Połom K, Litwiniuk M (2013) Total antioxidant status in plasma of breast cancer women in relation to ERβ expression. Contemp Oncol/Współczesna Onkologia 17(6):499–503

    Article  CAS  Google Scholar 

  36. Tahmasebpour N, Feizi MAH, Ziamajidi N, Pouladi N, Montazeri V, Farhadian M et al (2020) Association of omentin-1 with oxidative stress and clinical significances in patients with breast cancer. Adv Pharmaceut Bull 10(1):106–113

    Article  CAS  Google Scholar 

  37. Feng J-F, Lu L, Zeng P, Yang Y-H, Luo J, Yang Y-W et al (2012) Serum total oxidant/antioxidant status and trace element levels in breast cancer patients. Int J Clin Oncol 17(6):575–583

    Article  CAS  PubMed  Google Scholar 

  38. Zarrini AS, Moslemi D, Parsian H, Vessal M, Mosapour A, Kelagari ZS (2016) The status of antioxidants, malondialdehyde and some trace elements in serum of patients with breast cancer. Caspian J Int Med 7(1):31–36

    Google Scholar 

  39. Mossenta M, Busato D, Dal Bo M, Toffoli G (2020) Glucose metabolism and oxidative stress in hepatocellular carcinoma: role and possible implications in novel therapeutic strategies. Cancers 12(6):1668–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brown NS, Bicknell R (2001) Hypoxia and oxidative stress in breast cancer Oxidative stress-its effects on the growth, metastatic potential and response to therapy of breast cancer. Breast Cancer Res 3(5):1–5

    Article  Google Scholar 

  41. Hussain S, Ashafaq M (2018) Oxidative stress and anti-oxidants in pre and post-operative cases of breast carcinoma. Turkish J Pharmaceut Sci 15(3):354–359

    CAS  Google Scholar 

  42. Kilic N, Yavuz Taslipinar M, Guney Y, Tekin E, Onuk E (2014) An investigation into the serum thioredoxin, superoxide dismutase, malondialdehyde, and advanced oxidation protein products in patients with breast cancer. Ann Surg Oncol 21(13):4139–4143

    Article  PubMed  Google Scholar 

  43. Kangari P, Farahany TZ, Golchin A, Ebadollahzadeh S, Salmaninejad A, Mahboob SA et al (2018) Enzymatic antioxidant and lipid peroxidation evaluation in the newly diagnosed breast cancer patients in Iran. Asian Pacific J Cancer Prev: APJCP 19(12):3511–3515

    Article  CAS  Google Scholar 

  44. Woźniak B, Mila-Kierzenkowska C, Kedziora-Kornatowska K, Drewa T, Drewa G, Woźniak A et al (2007) Influence of the management of cervical carcinoma on the activity of catalase and glutathione peroxidase in erythrocytes. Eur J Gynaecol Oncol 28(6):461–463

    PubMed  Google Scholar 

  45. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D et al (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107

    CAS  PubMed  Google Scholar 

  46. Wang C, Yu J, Wang H, Zhang J, Wu N (2014) Lipid peroxidation and altered anti-oxidant status in breast adenocarcinoma patients. Drug research 64(12):690–692

    Article  CAS  PubMed  Google Scholar 

  47. Gupta RK, Patel AK, Kumari R, Chugh S, Shrivastav C, Mehra S et al (2012) Interactions between oxidative stress, lipid profile and antioxidants in breast cancer: a case control study. Asian Pac J Cancer Prev 13(12):6295–6298

    Article  PubMed  Google Scholar 

  48. Magalhaes T, Becker M, Carvalho M, Von Bohlen A (2008) Study of Br, Zn, Cu and Fe concentrations in healthy and cancer breast tissues by TXRF. Spectrochim Acta B At Spectrosc 63(12):1473–1479

    Article  Google Scholar 

  49. Jouybari L, Kiani F, Akbari A, Sanagoo A, Sayehmiri F, Aaseth J et al (2019) A meta-analysis of zinc levels in breast cancer. J Trace Elem Med Biol 56:90–99

    Article  CAS  PubMed  Google Scholar 

  50. Geraki K, Farquharson M, Bradley D (2002) Concentrations of Fe, Cu and Zn in breast tissue: a synchrotron XRF study. Phys Med Biol 47(13):2327

    Article  CAS  PubMed  Google Scholar 

  51. Cui Y, Vogt S, Olson N, Glass AG, Rohan TE (2007) Levels of zinc, selenium, calcium, and iron in benign breast tissue and risk of subsequent breast cancer. Cancer Epidemiol Biomark Prev 16(8):1682–1685

    Article  CAS  Google Scholar 

  52. Cabré N, Luciano-Mateo F, Arenas M, Nadal M, Baiges-Gaya G, Hernández-Aguilera A et al (2018) Trace element concentrations in breast cancer patients. Breast 42:142–149

    Article  PubMed  Google Scholar 

  53. Lossow K, Schwarz M, Kipp AP (2021) Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol 42:101900. https://doi.org/10.1016/j.redox.2021.101900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study has been extracted from a PhD dissertation (project no. 140002281458) and was approved and funded by Hamadan University of Medical Sciences, Hamadan, Iran

Funding

This project was supported by the Deputy of Research and Technology of Hamadan University of Medical Sciences (No 140002281458).

Author information

Authors and Affiliations

Authors

Contributions

Z.B. did all the experiments and wrote the manuscript, N.M. confirmed patients and gave samples, R.A. analyzed and interpreted the data, S.A.M-N revised the manuscript, and N.Z. generated and developed the study hypothesis and design and completed the final version of the manuscript.

Corresponding author

Correspondence to Nasrin Ziamajidi.

Ethics declarations

Ethics Approval and Consent to Participate

IR.UMSHA.REC.1400.088.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barartabar, Z., Moini, N., Abbasalipourkabir, R. et al. Assessment of Tissue Oxidative Stress, Antioxidant Parameters, and Zinc and Copper Levels in Patients with Breast Cancer. Biol Trace Elem Res 201, 3233–3244 (2023). https://doi.org/10.1007/s12011-022-03439-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03439-5

Keywords

Navigation