Skip to main content
Log in

Long-Term Excessive Selenium Supplementation Affects Gene Expression in Esophageal Tissue of Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Esophageal cancer is one of the leading causes of cancer death and the seventh most prevalent cancer worldwide. Considering the positive association of high selenium with the prevalence of esophageal cancer, we have investigated the effect of high doses of selenium on gene expression in the normal esophageal tissue of rats. Twenty male rats were randomly divided into four groups: control group, group 2 mg Se/L, 10 mg Se/L, and 20 mg Se/L rats fed with a basal basic diet and 2, 10, and 20 mg Se/L as sodium selenite in drinking water, respectively, for 20 weeks. Serum malondialdehyde and glutathione peroxidase activity were measured. Moreover, the expression and concentration of the cyclin D1, cyclin E, KRAS, p53, NF-kB, TGF-β, and MGMT in the esophageal tissue were analyzed and compared between the four groups. In normal esophageal tissue, selenium supplementations (2, 10, and 20 mg Se/L) increased the mRNA levels of cyclin D1, P53, KRAS, NF-κB p65, and MGMT and decreased the mRNA level of TGFß1. The concentrations of cyclin D1 and MGMT were also significantly increased by selenium supplementations. Selenium supplementations had no significant effect on serum MDA but significantly increased GPX activity. The present study suggests that selenium supplementation (2, 10, and 20 mg Se/L) affects gene expression related to inflammation, Cell proliferation, and apoptosis in the normal esophageal tissue. However, there were no observed abnormalities other than reduced growth with supplementation of 20 mg/L as Na2SeO3 in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA Cancer J Clin 70(1):7–30. https://doi.org/10.3322/caac.21590

    Article  PubMed  Google Scholar 

  2. Arnold M, Soerjomataram I, Ferlay J, Forman D (2015) Global incidence of oesophageal cancer by histological subtype in 2012. Gut 64(3):381–387. https://doi.org/10.1136/gutjnl-2014-308124

    Article  PubMed  Google Scholar 

  3. Arnold M, Ferlay J, van Berge Henegouwen MI, Soerjomataram I (2020) Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut 69(9):1564–1571. https://doi.org/10.1136/gutjnl-2020-321600

    Article  PubMed  Google Scholar 

  4. Thrift AP (2021) Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. Nat Rev Gastroenterol Hepatol 18(6):432–443. https://doi.org/10.1038/s41575-021-00419-3

    Article  PubMed  Google Scholar 

  5. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6(1):25–54. https://doi.org/10.1039/c3mt00185g

    Article  CAS  PubMed  Google Scholar 

  6. Lee KH, Jeong D (2012) Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox (Review). Mol Med Rep 5(2):299–304. https://doi.org/10.3892/mmr.2011.651

    Article  CAS  PubMed  Google Scholar 

  7. Razaghi A, Poorebrahim M, Sarhan D, Björnstedt M (2021) Selenium stimulates the antitumour immunity: Insights to future research. Eur J Cancer 155:256–267. https://doi.org/10.1016/j.ejca.2021.07.013

    Article  CAS  PubMed  Google Scholar 

  8. Ganther HE (1999) Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 20(9):1657–1666. https://doi.org/10.1093/carcin/20.9.1657

    Article  CAS  PubMed  Google Scholar 

  9. Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J (2018) Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 15:347–362. https://doi.org/10.1016/j.redox.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  10. Kieliszek M (2019) Selenium-Fascinating Microelement, Properties and Sources in Food. Molecules 24 (7). https://doi.org/10.3390/molecules24071298

  11. Kuria A, Fang X, Li M, Han H, He J, Aaseth JO, Cao Y (2020) Does dietary intake of selenium protect against cancer? A systematic review and meta-analysis of population-based prospective studies. Crit Rev Food Sci Nutr 60(4):684–694. https://doi.org/10.1080/10408398.2018.1548427

    Article  CAS  PubMed  Google Scholar 

  12. Kuršvietienė L, Mongirdienė A, Bernatonienė J, Šulinskienė J, Stanevičienė I (2020) Selenium Anticancer Properties and Impact on Cellular Redox Status. Antioxidants (Basel) 9(1). https://doi.org/10.3390/antiox9010080

  13. Radomska D, Czarnomysy R, Radomski D, Bielawska A, Bielawski K (2021) Selenium as a Bioactive Micronutrient in the Human Diet and Its Cancer Chemopreventive Activity. Nutrients 13(5). https://doi.org/10.3390/nu13051649

  14. Vinceti M, Filippini T, Cilloni S, Crespi CM (2017) The Epidemiology of Selenium and Human Cancer. Adv Cancer Res 136:1–48. https://doi.org/10.1016/bs.acr.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  15. Vinceti M, Vicentini M, Wise LA, Sacchettini C, Malagoli C, Ballotari P, Filippini T, Malavolti M, Rossi PG (2018) Cancer incidence following long-term consumption of drinking water with high inorganic selenium content. Sci Total Environ 635:390–396. https://doi.org/10.1016/j.scitotenv.2018.04.097

    Article  CAS  PubMed  Google Scholar 

  16. Appleton J, Zhang Q, Green K, Zhang G, Ge X, Liu X, Li JX (2006) Selenium in soil, grain, human hair and drinking water in relation to esophageal cancer in the Cixian area, Hebei Province, People’s Republic of China. Appl Geochem 21(4):684–700

    Article  CAS  Google Scholar 

  17. Semnani S, Roshandel G, Zendehbad A, Keshtkar A, Rahimzadeh H, Abdolahi N, Besharat S, Moradi A, Mirkarimi H, Hasheminasab S (2010) Soils selenium level and esophageal cancer: an ecological study in a high risk area for esophageal cancer. J Trace Elem Med Biol 24(3):174–177. https://doi.org/10.1016/j.jtemb.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Rahimzadeh-Barzoki H, Joshaghani H, Beirami S, Mansurian M, Semnani S, Roshandel G (2014) Selenium levels in rice samples from high and low risk areas for esophageal cancer. Saudi Med J 35(6):617–620

    PubMed  Google Scholar 

  19. Keshavarzi B, Moore F, Najmeddin A, Rahmani F (2012) The role of selenium and selected trace elements in the etiology of esophageal cancer in high risk Golestan province of Iran. Sci Total Environ 433:89–97. https://doi.org/10.1016/j.scitotenv.2012.04.033

    Article  CAS  PubMed  Google Scholar 

  20. Pritchett NR, Burgert SL, Murphy GA, Brockman JD, White RE, Lando J, Chepkwony R, Topazian MD, Abnet CC, Dawsey SM, Mwachiro MM (2017) Cross sectional study of serum selenium concentration and esophageal squamous dysplasia in western Kenya. BMC Cancer 17(1):835. https://doi.org/10.1186/s12885-017-3837-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eslami Z, Mirghani SJ, Moghanlou AE, Norouzi A, Naseh H, Joshaghani H, Peres WAF, Younesian O, Hosseinzadeh S, Bideskan JA (2021) An efficient model of non-alcoholic fatty liver disease (NAFLD) versus current experimental models: effects of fructose, fat, and carbon tetrachloride on NAFLD. Hepat Mon 21(8):e117696. https://doi.org/10.5812/hepatmon.117696

  22. Younesian O, Khodabakhshi B, Abdolahi N, Norouzi A, Behnampour N, Hosseinzadeh S, Alarzi SSH, Joshaghani H (2021) Decreased Serum Selenium Levels of COVID-19 Patients in Comparison with Healthy Individuals. Biol Trace Elem Res:1–6. https://doi.org/10.1007/s12011-021-02797-w

  23. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  24. Kostner K, Hornykewycz S, Yang P, Neunteufl T, Glogar D, Weidinger F, Maurer G, Huber K (1997) Is oxidative stress causally linked to unstable angina pectoris? A study in 100 CAD patients and matched controls. Cardiovasc Res 36(3):330–336. https://doi.org/10.1016/s0008-6363(97)00185-5

    Article  CAS  PubMed  Google Scholar 

  25. Raines AM, Sunde RA (2011) Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents. BMC Genomics 12:26. https://doi.org/10.1186/1471-2164-12-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu X, Chandler JD, Orr ML, Hao L, Liu K, Uppal K, Go YM, Jones DP (2018) Selenium Supplementation Alters Hepatic Energy and Fatty Acid Metabolism in Mice. J Nutr 148(5):675–684. https://doi.org/10.1093/jn/nxy036

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barchielli G, Capperucci A, Tanini D (2022) The Role of Selenium in Pathologies: An Updated Review. Antioxidants (Basel) 11(2). https://doi.org/10.3390/antiox11020251

  28. Chen X, Mikhail SS, Ding YW, Yang G, Bondoc F, Yang CS (2000) Effects of vitamin E and selenium supplementation on esophageal adenocarcinogenesis in a surgical model with rats. Carcinogenesis 21(8):1531–1536

    Article  CAS  PubMed  Google Scholar 

  29. Xie B, Lin J, Sui K, Huang Z, Chen Z, Hang W (2019) Differential diagnosis of multielements in cancerous and non-cancerous esophageal tissues. Talanta 196:585–591. https://doi.org/10.1016/j.talanta.2018.12.061

    Article  CAS  PubMed  Google Scholar 

  30. Nozadi F, Azadi N, Mansouri B, Tavakoli T, Mehrpour O (2021) Association between trace element concentrations in cancerous and non-cancerous tissues with the risk of gastrointestinal cancers in Eastern Iran. Environ Sci Pollut Res Int 28(44):62530–62540. https://doi.org/10.1007/s11356-021-15224-3

    Article  CAS  PubMed  Google Scholar 

  31. Liou GY, Döppler H, DelGiorno KE, Zhang L, Leitges M, Crawford HC, Murphy MP, Storz P (2016) Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. Cell Rep 14(10):2325–2336. https://doi.org/10.1016/j.celrep.2016.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dobrovolskaia MA, Kozlov SV (2005) Inflammation and cancer: when NF-kappaB amalgamates the perilous partnership. Curr Cancer Drug Targets 5(5):325–344. https://doi.org/10.2174/1568009054629645

    Article  CAS  PubMed  Google Scholar 

  33. Kang MR, Kim MS, Kim SS, Ahn CH, Yoo NJ, Lee SH (2009) NF-kappaB signalling proteins p50/p105, p52/p100, RelA, and IKKepsilon are over-expressed in oesophageal squamous cell carcinomas. Pathology 41(7):622–625. https://doi.org/10.3109/00313020903257756

    Article  CAS  PubMed  Google Scholar 

  34. Ledoux AC, Perkins ND (2014) NF-κB and the cell cycle. Biochem Soc Trans 42(1):76–81. https://doi.org/10.1042/bst20130156

    Article  CAS  PubMed  Google Scholar 

  35. Shi Y, Li MY, Wang H, Li C, Liu WY, Gao YM, Wang B, Song JW, Ma YQ (2022) The Relationship between MACC1/c-Met/Cyclin D1 Axis Expression and Prognosis in ESCC. Anal Cell Pathol (Amst) 2022:9651503. https://doi.org/10.1155/2022/9651503

    Article  CAS  PubMed  Google Scholar 

  36. Ferino A, Rapozzi V, Xodo LE (2020) The ROS-KRAS-Nrf2 axis in the control of the redox homeostasis and the intersection with survival-apoptosis pathways: Implications for photodynamic therapy. J Photochem Photobiol B 202:111672. https://doi.org/10.1016/j.jphotobiol.2019.111672

    Article  CAS  PubMed  Google Scholar 

  37. Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7(3):153–163. https://doi.org/10.1016/s0928-4680(00)00053-5

    Article  CAS  PubMed  Google Scholar 

  38. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2(8):594–604. https://doi.org/10.1038/nrc864

    Article  CAS  PubMed  Google Scholar 

  39. Shibata-Kobayashi S, Yamashita H, Okuma K, Shiraishi K, Igaki H, Ohtomo K, Nakagawa K (2013) Correlation among 16 biological factors [p53, p21(waf1), MIB-1 (Ki-67), p16(INK4A), cyclin D1, E-cadherin, Bcl-2, TNF-α, NF-κB, TGF-β, MMP-7, COX-2, EGFR, HER2/neu, ER, and HIF-1α] and clinical outcomes following curative chemoradiation therapy in 10 patients with esophageal squamous cell carcinoma. Oncol Lett 5(3):903–910. https://doi.org/10.3892/ol.2013.1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kok DE, Kiemeney LA, Verhaegh GW, Schalken JA, van Lin EN, Sedelaar JP, Witjes JA, Hulsbergen-van de Kaa CA, van ‘t Veer P, Kampman E, Afman LA (2017) A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate. Oncotarget 8(6):10565–10579. https://doi.org/10.18632/oncotarget.14551

    Article  PubMed  PubMed Central  Google Scholar 

  41. Christmann M, Verbeek B, Roos WP, Kaina B (2011) O(6)-Methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim Biophys Acta 1816(2):179–190. https://doi.org/10.1016/j.bbcan.2011.06.002

    Article  CAS  PubMed  Google Scholar 

  42. Jabłońska E, Reszka E (2017) Selenium and Epigenetics in Cancer: Focus on DNA Methylation. Adv Cancer Res 136:193–234. https://doi.org/10.1016/bs.acr.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  43. Galan-Chilet I, Tellez-Plaza M, Guallar E, De Marco G, Lopez-Izquierdo R, Gonzalez-Manzano I, Carmen Tormos M, Martin-Nuñez GM, Rojo-Martinez G, Saez GT, Martín-Escudero JC, Redon J, Javier Chaves F (2014) Plasma selenium levels and oxidative stress biomarkers: a gene-environment interaction population-based study. Free Radical Biol Med 74:229–236. https://doi.org/10.1016/j.freeradbiomed.2014.07.005

    Article  CAS  Google Scholar 

  44. Grotto D, Carneiro MFH, de Castro MM, Garcia SC, Barbosa Junior F (2018) Long-Term Excessive Selenium Supplementation Induces Hypertension in Rats. Biol Trace Elem Res 182(1):70–77. https://doi.org/10.1007/s12011-017-1076-1

    Article  CAS  PubMed  Google Scholar 

  45. Sunde RA, Li JL, Taylor RM (2016) Insights for Setting of Nutrient Requirements, Gleaned by Comparison of Selenium Status Biomarkers in Turkeys and Chickens versus Rats, Mice, and Lambs. Adv Nutr (Bethesda, Md) 7(6):1129–1138. https://doi.org/10.3945/an.116.012872

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These data are extracted from the Ph.D thesis submitted by Ommolbanin Younesian by grant number 111215, which was supported by Golestan University of Medical Sciences, Golestan province, Gorgan, Iran.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in the planning of the study and drafting the manuscript. All of them approved the final version of the article and the journal to which the article will be submitted.

Corresponding author

Correspondence to Hamidreza Joshaghani.

Ethics declarations

Ethics Approval

This study was approved by Ethics Committee of Golestan University of Medical Sciences with an ethics code (IR.GOUMS.REC.1399.227). All procedures performed were in agreement with the principles of the Declaration of Helsinki (1964) and later amendments.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Younesian, O., Sheikh Arabi, M., Jafari, S.M. et al. Long-Term Excessive Selenium Supplementation Affects Gene Expression in Esophageal Tissue of Rats. Biol Trace Elem Res 201, 3387–3394 (2023). https://doi.org/10.1007/s12011-022-03413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03413-1

Keywords

Navigation