Skip to main content

Advertisement

Log in

Silver Nanoparticles Enhance Oxidative Stress, Inflammation, and Apoptosis in Liver and Kidney Tissues: Potential Protective Role of Thymoquinone

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) are the most common nanomaterials in consumer products. Therefore, it has been crucial to control AgNPs toxicological effects to improve their safety and increase the outcome of their applications. This work investigated the possible protective effect of thymoquinone (TQ) against AgNPs-induced hepatic and renal cytotoxicity in rats. Serum markers of liver and kidney functions as well as liver and kidney oxidative stress status, pro-inflammatory cytokines, apoptosis markers, and histopathology were assessed. TQ reversed AgNPs-induced elevation in serum liver and kidney function markers, including aspartate transaminase, alanine transaminase, urea, and creatinine. Moreover, TQ co-administration with AgNPs alleviates hepatic and renal oxidative insults by decreasing MDA and NO levels with a significant increase in the activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione recycling enzymes peroxidase and reductase) compared to AgNPs-treated rats. Besides, TQ upregulated hepatic and renal Nrf2 gene expression in AgNPs-intoxicated rats. Furthermore, TQ co-administration decreased the hepatic and renal pro-inflammatory mediators represented by IL-1β, TNF-α, TGF-β, and NF-κB levels. Besides, TQ co-administration decreased apoptotic protein (Bax) levels and increased the anti-apoptotic protein (Bcl-2) levels. These findings were confirmed by the histopathological examination of hepatic and renal tissues. Our data affirmed the protective effect of TQ against AgNPs cytotoxicity and proposed a possible mechanism of TQ antioxidant, anti-inflammatory, and anti-apoptotic effects. Consequently, we could conclude that using TQ might control AgNPs toxicological effects, improve their safety, and increase the outcome of their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All relevant data are within the paper.

References

  1. Carbone M et al (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28(4):273–279

    Article  Google Scholar 

  2. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  3. Brabazon D. et al., 2017 Commercialization of nanotechnologies–a case study approach Springer.

  4. Ferdous Z, Nemmar A (2020) Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 21(7):2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y. and J Sun, 2007 A study on the bio-safety for nano-silver as anti-bacterial materials. Zhongguo yi liao qi xie za zhi= Chinese journal of medical instrumentation, 31(1): p. 36-8, 16.

  7. Akter M et al (2018) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Article  CAS  PubMed  Google Scholar 

  8. Sung JH et al (2011) Acute inhalation toxicity of silver nanoparticles. Toxicol Ind Health 27(2):149–154

    Article  CAS  PubMed  Google Scholar 

  9. Carlson C et al (2008) Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 112(43):13608–13619

    Article  CAS  PubMed  Google Scholar 

  10. De Matteis V et al (2015) Negligible particle-specific toxicity mechanism of silver nanoparticles the role of Ag+ ion release in the cytosol. Nanomedicine 11(3):731–739

    Article  PubMed  Google Scholar 

  11. Ferdous Z et al (2018) The in vitro effect of polyvinylpyrrolidone and citrate coated silver nanoparticles on erythrocytic oxidative damage and eryptosis. Cell Physiol Biochem 49(4):1577–1588

    Article  CAS  PubMed  Google Scholar 

  12. Makama S et al (2018) Effects of systematic variation in size and surface coating of silver nanoparticles on their in vitro toxicity to macrophage RAW 264.7 cells. Toxicol sci 162(1):79–88

    Article  CAS  PubMed  Google Scholar 

  13. He W et al (2016) In vitro uptake of silver nanoparticles and their toxicity in human mesenchymal stem cells derived from bone marrow. J Nanosci Nanotechnol 16(1):219–228

    Article  CAS  PubMed  Google Scholar 

  14. Ahamed M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233(3):404–410

    Article  CAS  PubMed  Google Scholar 

  15. De Matteis V (2017) Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 5(4):29

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sriram MI et al (2012) Size-based cytotoxicity of silver nanoparticles in bovine retinal endothelial cells. Nanoscience Methods 1(1):56–77

    Article  CAS  Google Scholar 

  17. Gurunathan S et al (2015) Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: targeting p53 for anticancer therapy. Int J Nanomed 10:4203

    Article  CAS  Google Scholar 

  18. Assar DH, et al., 2022 Silver nanoparticles induced hepatoxicity via the apoptotic/antiapoptotic pathway with activation of TGFβ-1 and α-SMA triggered liver fibrosis in Sprague Dawley rats. Environ Sci Pollut Res, p. 1–18.

  19. Nosrati H et al (2021) The potential renal toxicity of silver nanoparticles after repeated oral exposure and its underlying mechanisms. BMC Nephrol 22(1):1–12

    Article  Google Scholar 

  20. Gaillet S, Rouanet J-M (2015) Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms–a review. Food Chem Toxicol 77:58–63

    Article  CAS  PubMed  Google Scholar 

  21. Gökce EC et al (2016) Neuroprotective effects of thymoquinone against spinal cord ischemia-reperfusion injury by attenuation of inflammation, oxidative stress, and apoptosis. J Neurosurg Spine 24(6):949–959

    Article  PubMed  Google Scholar 

  22. Al Aboud D et al (2021) Protective efficacy of thymoquinone or ebselen separately against arsenic-induced hepatotoxicity in rat. Environ Sci Pollut Res 28(5):6195–6206

    Article  CAS  Google Scholar 

  23. Kassab RB, El-Hennamy RE (2017) The role of thymoquinone as a potent antioxidant in ameliorating the neurotoxic effect of sodium arsenate in female rat. Egypt J Basic Appl Sci 4(3):160–167

    Google Scholar 

  24. Al-Brakati A et al (2019) Role of thymoquinone and ebselen in the prevention of sodium arsenite–induced nephrotoxicity in female rats. Hum Exp Toxicol 38(4):482–493

    Article  CAS  PubMed  Google Scholar 

  25. Abdel-Daim MM et al (2020) Protective effects of thymoquinone against acrylamide-induced liver, kidney and brain oxidative damage in rats. Environ Sci Pollut Res 27(30):37709–37717

    Article  CAS  Google Scholar 

  26. Farag MM et al (2015) Thymoquinone improves the kidney and liver changes induced by chronic cyclosporine A treatment and acute renal ischaemia/reperfusion in rats. J Pharm Pharmacol 67(5):731–739

    Article  CAS  PubMed  Google Scholar 

  27. Hamdy NM, Taha RA (2009) Effects of Nigella sativa oil and thymoquinone on oxidative stress and neuropathy in streptozotocin-induced diabetic rats. Pharmacol 84(3):127–134

    Article  CAS  Google Scholar 

  28. El Mezayen R et al (2006) Effect of thymoquinone on cyclooxygenase expression and prostaglandin production in a mouse model of allergic airway inflammation. Immunol Lett 106(1):72–81

    Article  PubMed  Google Scholar 

  29. Shehata AM et al (2022) Evaluation of the ameliorative effect of zinc nanoparticles against silver nanoparticle–induced toxicity in liver and kidney of rats. Biol Trace Elem Res 200(3):1201–1211

    Article  CAS  PubMed  Google Scholar 

  30. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  31. Green LC et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138

    Article  CAS  PubMed  Google Scholar 

  32. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  33. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  34. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  PubMed  Google Scholar 

  35. Factor VM et al (1998) Disruption of redox homeostasis in the transforming growth factor-alpha/c-myc transgenic mouse model of accelerated hepatocarcinogenesis. J Biol Chem 273(25):15846–15853

    Article  CAS  PubMed  Google Scholar 

  36. Xu L et al (2012) Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. J Nanobiotechnol 10(1):1–11

    Article  Google Scholar 

  37. Tsiola A et al (2017) The impact of silver nanoparticles on marine plankton dynamics: dependence on coating, size and concentration. Sci Total Environ 601:1838–1848

    Article  PubMed  Google Scholar 

  38. Kim HR, et al., 2013 Appropriate in vitro methods for genotoxicity testing of silver nanoparticles. Environ Health Toxicol. 28.

  39. Jiménez-Lamana J et al (2014) An insight into silver nanoparticles bioavailability in rats. Metallomics 6(12):2242–2249

    Article  PubMed  Google Scholar 

  40. Wen H et al (2017) Acute toxicity and genotoxicity of silver nanoparticle in rats. PLoS ONE 12(9):e0185554

    Article  PubMed  PubMed Central  Google Scholar 

  41. Su C-K et al (2014) Quantitatively profiling the dissolution and redistribution of silver nanoparticles in living rats using a knotted reactor-based differentiation scheme. Anal Chem 86(16):8267–8274

    Article  CAS  PubMed  Google Scholar 

  42. Tiwari DK, Jin T, Behari J (2011) Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol Mech Methods 21(1):13–24

    Article  CAS  PubMed  Google Scholar 

  43. Al-Brakati A et al (2020) Neuromodulatory effects of green coffee bean extract against brain damage in male albino rats with experimentally induced diabetes. Metab Brain Dis 35(7):1175–1187

    Article  CAS  PubMed  Google Scholar 

  44. Patlolla AK, Hackett D, Tchounwou PB (2015) Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem 399(1):257–268

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X-F, Shen W, Gurunathan S (2016) Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int J Mol Sci 17(10):1603

    Article  PubMed  PubMed Central  Google Scholar 

  46. AshaRani P et al (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290

    Article  CAS  PubMed  Google Scholar 

  47. Li L et al (2018) Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum-and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol Lett 285:156–167

    Article  CAS  PubMed  Google Scholar 

  48. Fang W et al (2019) Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: from the aspects of antioxidant enzyme activities and molecular interaction mechanisms. J Nanobiotechnol 17(1):1–13

    Article  Google Scholar 

  49. Liu W, Worms I, Slaveykova VI (2020) Interaction of silver nanoparticles with antioxidant enzymes. Environ Sci Nano 7(5):1507–1517

    Article  CAS  Google Scholar 

  50. Zhou Y-T et al (2013) Effect of silver nanomaterials on the activity of thiol-containing antioxidants. J Agric Food Chem 61(32):7855–7862

    Article  CAS  PubMed  Google Scholar 

  51. Albrahim T (2020) Silver nanoparticles-induced nephrotoxicity in rats: the protective role of red beetroot (Beta vulgaris) juice. Environ Sci Pollut Res 27(31):38871–38880

    Article  CAS  Google Scholar 

  52. Noorbakhsh M-F et al (2018) An overview of hepatoprotective effects of thymoquinone. Recent Pat Food Nutr Agric 9(1):14–22

    Article  CAS  PubMed  Google Scholar 

  53. Abd-Elbaset M et al (2017) Thymoquinone mitigate ischemia-reperfusion-induced liver injury in rats: a pivotal role of nitric oxide signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 390(1):69–76

    Article  CAS  PubMed  Google Scholar 

  54. Talib WH, AbuKhader MM (2013) Combinatorial effects of thymoquinone on the anticancer activity and hepatotoxicity of the prodrug CB 1954. Sci Pharm 81(2):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Al-Malki AL, Sayed AAR (2014) Thymoquinone attenuates cisplatin-induced hepatotoxicity via nuclear factor kappa-β. BMC Complement Altern Med 14(1):1–8

    Article  Google Scholar 

  56. Laskar AA et al (2016) Thymoquinone, an active constituent of Nigella sativa seeds, binds with bilirubin and protects mice from hyperbilirubinemia and cyclophosphamide-induced hepatotoxicity. Biochimie 127:205–213

    Article  CAS  PubMed  Google Scholar 

  57. Nili-Ahmadabadi A et al (2011) Protective effect of pretreatment with thymoquinone against Aflatoxin B1 induced liver toxicity in mice. Daru J Faculty Pharm Tehran Univ Med Sci 19(4):282

    CAS  Google Scholar 

  58. Mansour MA (2000) Protective effects of thymoquinone and desferrioxamine against hepatotoxicity of carbon tetrachloride in mice. Life Sci 66(26):2583–2591

    Article  CAS  PubMed  Google Scholar 

  59. Kim J, Cha Y-N, Surh Y-J (2010) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res 690(1–2):12–23

    Article  CAS  PubMed  Google Scholar 

  60. Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7(17):7470–7481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang H, Sun S-C (2015) NF-κB in inflammation and renal diseases. Cell Biosci 5(1):1–12

    Article  Google Scholar 

  62. Choi JE et al (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100(2):151–159

    Article  CAS  PubMed  Google Scholar 

  63. Park E-J et al (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168

    Article  CAS  PubMed  Google Scholar 

  64. Korani M, Rezayat SM, Bidgoli SA (2013) Sub-chronic dermal toxicity of silver nanoparticles in guinea pig: special emphasis to heart, bone and kidney toxicities. Iran J Pharm Res 12(3):511

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Gaiser BK et al (2013) Effects of silver nanoparticles on the liver and hepatocytes in vitro. Toxicol Sci 131(2):537–547

    Article  CAS  PubMed  Google Scholar 

  66. Darakhshan S et al (2015) Thymoquinone and its therapeutic potentials. Pharmacol Res 95:138–158

    Article  PubMed  Google Scholar 

  67. Piao MJ et al (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100

    Article  CAS  PubMed  Google Scholar 

  68. El-Ghany A, et al., 2009 Thymoquinone triggers anti-apoptotic signaling targeting death ligand and apoptotic regulators in a model of hepatic ischemia reperfusion injury. Drug discoveries & therapeutics.3(6).

  69. Sethi G, Ahn KS, Aggarwal BB (2008) Targeting nuclear factor-κB activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res 6(6):1059–1070

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Taif University Researchers Supporting Program (Project number: TURSP-2020/151), Taif University, Saudi Arabia, for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and supervision: A.E.A., R.B.K., and A.A.; animal treatments and molecular and biochemical methodologies were performed by B.S., K.J.A., K.S.A., O.A., K.E.H., and M.A.E.; histological methodology and investigation were conducted by F.A., H.A.A., H.A., and A.S.F.; data analysis, software, data curation, and visualization were performed by H.K.A., M.S.L., K.F.A., and A.A.; writing-reviewing and editing manuscript was performed by B.S., A.E.A., and R.B.K. All authors participated in the design and interpretation of the study and approved the final manuscript.

Corresponding author

Correspondence to Rami B. Kassab.

Ethics declarations

Ethics Approval

The study protocol was reviewed and approved by the institutional animal care and use committee, Faculty of Science, Helwan University (HU/2020/Z/AEN0120-01), following the European Community Directive (86/609/EEC).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, B., Alzahrani, K.J., Alghamdi, K.S. et al. Silver Nanoparticles Enhance Oxidative Stress, Inflammation, and Apoptosis in Liver and Kidney Tissues: Potential Protective Role of Thymoquinone. Biol Trace Elem Res 201, 2942–2954 (2023). https://doi.org/10.1007/s12011-022-03399-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03399-w

Keywords

Navigation