Skip to main content

Advertisement

Log in

JAK2/STAT3 Signaling Pathway and Klotho Gene in Cadmium-induced Neurotoxicity In Vitro and In Vivo

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd), a common heavy metal in the environment, is associated with cognitive impairment. In the present study, we carried out a preliminary inquiry to explore whether Cd causes neurotoxicity by regulating the JAK2/STAT3 signaling pathway and affecting the expression of klotho genes in vivo and in vitro, providing clues for the mechanism of Cd-induced cognitive dysfunction. The rat samples were injected with Cd chloride solution for 14 weeks, and the memory function of the rats was detected. Different concentrations of Cd and JAK2/STAT3 signaling pathway inhibitors were used to treat PC12 cells and thus detect the apoptosis rate. The protein expression levels of JAK2, p-JAK2, STAT3, p-STAT3, and klotho in rat and PC12 cell were detected by ELISA and Western blot, respectively. With the increase in exposure dose, the memory function of rats was severely impaired. The expression of p-JAK2 and p-STAT3 proteins was significantly up-regulated, whereas that of klotho was significantly down-regulated both in vivo and in vitro (p < 0.05). In comparison with the high-dose Cd exposure group, after adding tyrphostin AG490 (AG490), the apoptosis rate of PC12 cells increased, whereas the phosphorylation levels of JAK2 and STAT3 in the cells decreased significantly (p < 0.05). Cd exposure may cause neurotoxicity by regulating the JAK2/STAT3 signaling pathway and down-regulating klotho protein expression, leading to cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garner RLP (2016) Cadmium levels and sources of exposure among Canadian adults. Health Rep 27(2):10–18

    PubMed  Google Scholar 

  2. Yamanobe YNN, Matsukawa T, Ito T, Niimori-Kita K, Chiba M, Yokoyama K, Takizawa T (2015) Sex differences in shotgun proteome analyses for chronic oral intake of cadmium in mice. PLoS One 10(3):e0121819. https://doi.org/10.1371/journal.pone.0121819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu ZCL, Liu Y, Chen W, Wang Q (2019) Association between prenatal cadmium exposure and cognitive development of offspring: a systematic review. Environ Pollut 254(Pt B):113081. https://doi.org/10.1016/j.envpol.2019.113081

    Article  CAS  PubMed  Google Scholar 

  4. Gustin KTF, Vahter M, Kippler M (2018) Cadmium exposure and cognitive abilities and behavior at 10 years of age: a prospective cohort study. Environ Int 113:259–268. https://doi.org/10.1016/j.envint.2018.02.020

    Article  CAS  PubMed  Google Scholar 

  5. Chen HLW, Zhang Y, Lin L, Chen J, Zeng Y, Zheng M, Zhuang Z, Du H, Chen R, Liu N (2016) IL-10 promotes neurite outgrowth and synapse formation in cultured cortical neurons after the oxygen-glucose deprivation via JAK1/STAT3 pathway. Sci Rep 6:30459. https://doi.org/10.1038/srep30459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu YGY, Ding X, Wang J, Chen J, Miao C (2017) Intracellular Ca2+ homeostasis and JAK1/STAT3 pathway are involved in the protective effect of propofol on BV2 microglia against hypoxia-induced inflammation and apoptosis. PLoS One 12(5):e0178098. https://doi.org/10.1371/journal.pone.0178098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Musso TJJ, Linnekin D, Varesio L, Rowe TK, O’Shea JJ, McVicar DW (1995) Regulation of JAK3 expression in human monocytes: phosphorylation in response to interleukins 2, 4, and 7. J Exp Med 181(4):425–431. https://doi.org/10.1084/jem.181.4.1425

    Article  Google Scholar 

  8. Dodington DWDH, Woo M (2018) JAK/STAT – emerging players in metabolism. Trends Endocrinol Metab 29(1):55–65. https://doi.org/10.1016/j.tem.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  9. Kim BKTH, Shin EJ, Lee C, Chung YH, Jeong JH, Bach JH, Kim WK, Park DH, Saito K, Nabeshima T, Kim HC (2013) IL-6 attenuates trimethyltin-induced cognitive dysfunction via activation of JAK2/STAT3, M1 mAChR and ERK signaling network. Cell Signal 25(6):1348–1360. https://doi.org/10.1016/j.cellsig.2013.02.017

    Article  CAS  Google Scholar 

  10. Zhou TFYJ (2013) Recombinant human erythropoietin attenuates neuronal apoptosis and cognitive defects via JAK2/STAT3 signaling in experimental endotoxemia. J Surg Res 183(1):304–312. https://doi.org/10.1016/j.jss.2012.11.035

    Article  CAS  PubMed  Google Scholar 

  11. Monroe RKHS (2006) Cadmium blocks receptor-mediated JAK/STAT signaling in neurons by oxidative stress. Free Radical Biol Med 41(3):493–502. https://doi.org/10.1016/j.freeradbiomed.2006.04.023

    Article  CAS  Google Scholar 

  12. Zhang SP, Wang Z, Wang LX, Liu SJ (2011) AG490: an inhibitor of hepcidin expression in vivo. World J Gastroenterol 17(45):5032–5034. https://doi.org/10.3748/wjg.v17.i45.5032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xuan L, Han F, Gong L, Lv Y, Wan Z, Liu H, Ren L, Yang S, Zhang W, Li T, Tan C, Liu L (2020) Ceramide induces MMP-9 expression through JAK2/STAT3 pathway in airway epithelium. Lipids Health Dis 19(1):196. https://doi.org/10.1186/s12944-020-01373-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuro-o MMY, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390(6655):45–51. https://doi.org/10.1038/36285

    Article  CAS  PubMed  Google Scholar 

  15. Xu YSZ (2017) Molecular basis of klotho: from gene to function in aging. Endocr Rev 36(2):174–193. https://doi.org/10.1210/er.2013-1079

    Article  CAS  Google Scholar 

  16. Yu D, Zhang L, Yu G, Nong C, Lei M, Tang J, Chen Q, Cai J, Chen S, Wei Y, Xu X, Tang X, Zou Y, Qin J (2020) Association of liver and kidney functions with klotho gene methylation in a population environment exposed to cadmium in China. Int J Environ Health Res 30(1):38–48. https://doi.org/10.1080/09603123.2019.1572106

    Article  CAS  PubMed  Google Scholar 

  17. Shardell MSR, Rosano C, Kalyani RR, Bandinelli S, Chia CW, Ferrucci L (2015) Plasma klotho and cognitive decline in older adults: findings from the InCHIANTI study. J Gerontol A Biol Sci Med Sci 71(5):677–682. https://doi.org/10.1093/gerona/glv140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shiozaki MYK, Shibata M, Koike M, Matsuura N, Uchiyama Y, Gotow T (2008) Morphological and biochemical signs of age-related neurodegenerative changes in klotho mutant mice. Neuroscience 152(4):924–941. https://doi.org/10.1016/j.neuroscience.2008.01.032

    Article  CAS  PubMed  Google Scholar 

  19. Dubal DBZL, Sanchez PE, Worden K, Broestl L, Johnson E, Ho K, Yu GQ, Kim D, Betourne A, Kuro-O M, Masliah E, Abraham CR, Mucke L (2015) Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 35(6):2358–2371. https://doi.org/10.1523/JNEUROSCI.5791-12.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nguyen BTSN, Shin EJ, Jeong JH, Lee SH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Kim HC (2019) Theanine attenuates memory impairments induced by klotho gene depletion in mice. Food Funct 10(1):325–332. https://doi.org/10.1039/c8fo01577e

    Article  CAS  PubMed  Google Scholar 

  21. Aliomrani MSM, Shirkhanloo H, Sharifzadeh M, Khoshayand MR, Ghahremani MH (2016) Blood concentrations of cadmium and lead in multiple sclerosis patients from Iran. Iran J Pharm Res 15(4):825–833

  22. Durand CSN, Schwoebel V (2015) Assessment of exposure to soils contaminated with lead, cadmium, and arsenic near a zinc smelter, Cassiopée Study, France, 2008. Environ Monit Assess 187(6):352. https://doi.org/10.1007/s10661-015-4587-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu HSL, Chen X, Wang S, Cheng Y, Lin S, Ding L, Liu J, Chen C, Unverzagt FW, Hake AM, Jin Y, Gao S (2021) Higher blood cadmium level is associated with greater cognitive decline in rural Chinese adults aged 65 or older. Sci Total Environ 756:144072. https://doi.org/10.1016/j.scitotenv.2020.144072

    Article  CAS  PubMed  Google Scholar 

  24. Peng YLZ, Yang X, Yang L, He M, Zhang H, Wei X, Qin J, Li X, Lu G, Zhang L, Yang Y, Zhang Z, Zou Y (2020) Relation between cadmium body burden and cognitive function in older men: a cross-sectional study in China. Chemosphere 250:126535. https://doi.org/10.1016/j.chemosphere.2020.126535

    Article  CAS  PubMed  Google Scholar 

  25. Zhang LWH, Abel GM, Storm DR, Xia Z (2020) The effects of gene-environment interactions between cadmium exposure and apolipoprotein E4 on memory in a mouse model of Alzheimer’s disease. Toxicol Sci 173(1):189–201. https://doi.org/10.1093/toxsci/kfz218/5593668

    Article  PubMed  Google Scholar 

  26. Zhou FYG, Gao Y, Ouyang L, Liu S, Jia Q, Yu H, Zha Z, Wang K, Xie J, Fan Y, Shao L, Feng C, Fan G (2020) Insights into cognitive deficits caused by low-dose toxic heavy metal mixtures and their remediation through a postnatal enriched environment in rats. J Hazard Mater 388:122081. https://doi.org/10.1016/j.jhazmat.2020.122081

    Article  CAS  PubMed  Google Scholar 

  27. Gao SJY, Unverzagt FW, Ma F, Hall KS, Murrell JR, Cheng Y, Shen J, Ying B, Ji R, Matesan J, Liang C, Hendrie HC (2008) Trace element levels and cognitive function in rural elderly Chinese. J Gerontol A Biol Sci Med Sci 63(6):635–641. https://doi.org/10.1093/gerona/63.6.635

    Article  PubMed  Google Scholar 

  28. Gonçalves JFNF, da Costa P, Farias JG, Carvalho FB, da Rosa MM, Gutierres JM, Abdalla FH, Pereira JS, Dias GR, Barbosa NB, Dressler VL, Rubin MA, Morsch VM, Schetinger MR (2012) Behavior and brain enzymatic changes after long-term intoxication with cadmium salt or contaminated potatoes. Food Chem Toxicol 50(10):3709–3718. https://doi.org/10.1016/j.fct.2012.07.016

    Article  CAS  PubMed  Google Scholar 

  29. Nabavi SM AT, Nawaz M, Devi KP, Balan DJ, Pittalà V, Argüelles-Castilla S, Testai L, Khan H, Sureda A, de Oliveira MR, Vacca RA, Xu S, Yousefi B, Curti V, Daglia M, Sobarzo-Sánchez E, Filosa R, Nabavi SF, Majidinia M, Dehpour AR, Shirooie S (2019) Targeting STATs in neuroinflammation: the road less traveled! 141:73-84. https://doi.org/10.1016/j.phrs.2018.12.004

  30. Zhao JBZY, Li GZ, Su XF, Hang CH (2011) Activation of JAK2/STAT pathway in cerebral cortex after experimental traumatic brain injury of rats. Neurosci Lett 498(2):147–152. https://doi.org/10.1016/j.neulet.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  31. Grabenstatter HLDAY, Carlsen J, Wempe MF, White AM, Cogswell M, Russek SJ, Brooks-Kayal AR (2014) The effect of STAT3 inhibition on status epilepticus and subsequent spontaneous seizures in the pilocarpine model of acquired epilepsy. Neurobiol Dis 62:73–85. https://doi.org/10.1016/j.nbd.2013.09.003

    Article  CAS  PubMed  Google Scholar 

  32. Okada SNM, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of STAT3 or SOCS3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12(7):829–834. https://doi.org/10.1038/nm1425

    Article  CAS  PubMed  Google Scholar 

  33. Hase Y, Horsburgh K, Ihara M, Kalaria RN (2018) White matter degeneration in vascular and other ageing-related dementias. J Neurochem 144(5):617–633. https://doi.org/10.1111/jnc.14271

    Article  CAS  PubMed  Google Scholar 

  34. Chen XM, Yu YH, Wang L, Zhao XY, Li JR (2019) Effect of the JAK2/STAT3 signaling pathway on nerve cell apoptosis in rats with white matter injury. Eur Rev Med Pharmacol Sci 23(1):321–7

    PubMed  Google Scholar 

  35. Li CD, Zhao JY, Chen JL, Lu JH, Zhang MB, Huang Q, Cao YN, Jia GL, Tao YX, Li J, Cao H (2019) Mechanism of the JAK2/STAT3-CAV-1-NR2B signaling pathway in painful diabetic neuropathy. Endocrine 64(1):55–66. https://doi.org/10.1007/s12020-019-01880-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abraham CRMP, Tucker-Zhou T, Chen CD, Zeldich E (2016) Klotho is a neuroprotective and cognition-enhancing protein. Vitam Horm 101:215–238. https://doi.org/10.1016/bs.vh.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  37. Huang JSGJ, Chen HC, Hung WC, Lai YH, Chuang LY (2001) Role of receptor for advanced glycation end-product (rage) and the JAK/STAT-signaling pathway in age-induced collagen production in NRK-49F cells. J Cell Biochem 81(1):102–113. https://doi.org/10.1002/1097-4644(20010401)81:1%3c102::aid-jcb1027%3e3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  38. Huang JSLY, Chuang LY, Guh JY, Hwang JY (2015) Cinnamaldehyde and nitric oxide attenuate advanced glycation end products-induced the JAK/STAT signaling in human renal tubular cells. J Cell Biochem 116(6):1028–1038. https://doi.org/10.1002/jcb.25058

    Article  CAS  PubMed  Google Scholar 

  39. Shaw SSSA, Banes AK, Wang X, Stern DM, Marrero MB (2003) S100b-rage-mediated augmentation of angiotensin II-induced activation of JAK2 in vascular smooth muscle cells is dependent on PLD2. Diabetes 59(2):2381–2388. https://doi.org/10.2337/diabetes

    Article  Google Scholar 

  40. Li QVH, Wang J, Fox-Quick S, Dobrunz LE, King GD (2017) Klotho regulates CA1 hippocampal synaptic plasticity. Neuroscience 347:123–133. https://doi.org/10.1016/j.neuroscience.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  41. Park SJSE, Min SS, An J, Li Z, Hee Chung Y, Hoon Jeong J, Bach JH, Nah SY, Kim WK, Jang CG, Kim YS, Nabeshima Y, Nabeshima T, Kim HC (2013) Inactivation of JAK2/STAT3 Signaling axis and downregulation of M1 mAChR cause cognitive impairment in klotho mutant mice. Neuropsychopharmacology 38(8):1426–1437. https://doi.org/10.1038/npp.2013.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 81660528), the Guangxi Natural Science Found for Innovation Research Team (2019GXNSFGA245002), and the Guangxi Scholarship Fund of the Guangxi Education Department of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyong Zhang or Jian Qin.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the Institutional Research Ethics Committee of Guangxi Medical University in 2018.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yu, D., Wei, P. et al. JAK2/STAT3 Signaling Pathway and Klotho Gene in Cadmium-induced Neurotoxicity In Vitro and In Vivo. Biol Trace Elem Res 201, 2854–2863 (2023). https://doi.org/10.1007/s12011-022-03370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03370-9

Keywords

Navigation