Skip to main content

Advertisement

Log in

Magnesium Ions Promote In Vitro Rat Bone Marrow Stromal Cell Angiogenesis Through Notch Signaling

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Bone defects are often caused by trauma or surgery and can lead to delayed healing or even bone nonunion, thereby resulting in impaired function of the damaged site. Magnesium ions and related metallic materials play a crucial role in repairing bone defects, but the mechanism remains unclear. In this study, we induced the angiogenic differentiation of bone marrow stromal cells (BMSCs) with different concentrations of magnesium ions. The mechanism was investigated using γ-secretase inhibitor (DAPT) at different time points (7 and 14 days). Angiogenesis, differentiation, migration, and chemotaxis were detected using the tube formation assay, wound-healing assay, and Transwell assay. Besides, we analyzed mRNA expression and the angiogenesis-related protein levels of genes by RT-qPCR and western blot. We discovered that compared with other concentrations, the 5 mM magnesium ion concentration was more conducive to forming tubes. Additionally, hypoxia-inducible factor 1 alpha (Hif-1α) and endothelial nitric oxide (eNOS) expression both increased (p < 0.05). After 7 and 14 days of induction, 5 mM magnesium ion group tube formation, migration, and chemotaxis were enhanced, and the expression of Notch pathway genes increased. Moreover, expression of the Notch target genes hairy and enhancer of split 1 (Hes1) and Hes5 (hairy and enhancer of split 5), as well as the angiogenesis-related genes Hif-1α and eNOS, were enhanced (p < 0.05). However, these trends did not occur when DAPT was applied. This indicates that 5 mM magnesium ion is the optimal concentration for promoting the angiogenesis and differentiation of BMSCs in vitro. By activating the Notch signaling pathway, magnesium ions up-regulate the downstream genes Hes1 and Hes5 and the angiogenesis-related genes Hif-1α and eNOS, thereby promoting the angiogenesis differentiation of BMSCs. Additionally, magnesium ion-induced differentiation enhances the migration and chemotaxis of BMSCs. Thus, we can conclude that magnesium ions and related metallic materials promote angiogenesis to repair bone defects. This provides the rationale for developing artificial magnesium-containing bone materials through tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:299–308

    Article  Google Scholar 

  2. van de Vijfeijken S, Münker T, Spijker R, Karssemakers L, Vandertop WP, Becking AG, Ubbink DT (2018) Autologous bone is inferior to alloplastic cranioplasties: safety of autograft and allograft materials for cranioplasties, a systematic review. World Neurosurg 117:443–452. https://doi.org/10.1016/j.wneu.2018.05.193

    Article  PubMed  Google Scholar 

  3. Chen X, Gao CY, Chu XY, Zheng CY, Luan YY, He X, Yang K, Zhang DL (2022) VEGF-loaded heparinised gelatine-hydroxyapatite-tricalcium phosphate scaffold accelerates bone regeneration via enhancing osteogenesis-angiogenesis coupling. Front Bioeng Biotechnol 10:915181. https://doi.org/10.3389/fbioe.2022.915181

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tao ZS, Zhou WS, Tu KK, Huang ZL, Zhou Q, Sun T, Lv YX, Cui W, Yang L (2015) Treatment study of distal femur for parathyroid hormone (1–34) and β-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats. J Craniomaxillofac Surg 43(10):2136–2143. https://doi.org/10.1016/j.jcms.2015.09.004

    Article  PubMed  Google Scholar 

  5. Sukegawa S, Kanno T, Matsumoto K, Sukegawa-Takahashi Y, Masui M, Furuki Y (2018) Complications of a poly-L-lactic acid and polyglycolic acid osteosynthesis device for internal fixation in maxillofacial surgery. Odontology 106(4):360–368. https://doi.org/10.1007/s10266-018-0345-6

    Article  CAS  PubMed  Google Scholar 

  6. Szczęsny G, Kopec M, Politis DJ, Kowalewski ZL, łazarski A, Szolc T 2022 A review on biomaterials for orthopaedic surgery and traumatology: from past to present. Materials (Basel) 15(10) https://doi.org/10.3390/ma15103622

  7. Han H, Loffredo S, Jun I, Edwards J, Kim Y, Seok H, Witte F, Mantovani D, Glyn-Jones S (2019) Current status and outlook on the clinical translation of biodegradable metals. Mater Today 23:57–71. https://doi.org/10.1016/j.mattod.2018.05.018

    Article  CAS  Google Scholar 

  8. Romani A (2018) Beneficial role of Mg(2+) in prevention and treatment of hypertension. Int J Hypertens 2018:9013721. https://doi.org/10.1155/2018/9013721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L 2017 Biodegradable materials and metallic implants-a review. J Funct Biomater 8(4) https://doi.org/10.3390/jfb8040044

  10. Wang JL, Xu JK, Hopkins C, Chow DH, Qin L (2020) Biodegradable magnesium-based implants in orthopedics-a general review and perspectives. Adv Sci (Weinh) 7(8):1902443. https://doi.org/10.1002/advs.201902443

    Article  CAS  PubMed  Google Scholar 

  11. Bobe K, Willbold E, Haupt M, Reebmann M, Morgenthal I, Andersen O, Studnitzky T, Nellesen J, Tillmann W, Vogt C, Vano-Herrera K, Witte F (2022) Biodegradable open-porous scaffolds made of sintered magnesium W4 and WZ21 short fibres show biocompatibility in vitro and in long-term in vivo evaluation. Acta Biomater. https://doi.org/10.1016/j.actbio.2022.06.005

    Article  PubMed  Google Scholar 

  12. Diomede F, Marconi GD, Fonticoli L, Pizzicanella J, Merciaro I, Bramanti P, Mazzon E, Trubiani O 2020 Functional relationship between osteogenesis and angiogenesis in tissue regeneration. Int J Mol Sci 21(9) https://doi.org/10.3390/ijms21093242

  13. Maes C (2013) Role and regulation of vascularization processes in endochondral bones. Calcif Tissue Int 92(4):307–323. https://doi.org/10.1007/s00223-012-9689-z

    Article  CAS  PubMed  Google Scholar 

  14. Peng Y, Wu S, Li Y, Crane JL (2020) Type H blood vessels in bone modeling and remodeling. Theranostics 10(1):426–436. https://doi.org/10.7150/thno.34126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kusumbe AP, Ramasamy SK, Adams RH (2014) Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492):323–328. https://doi.org/10.1038/nature13145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang L, Zhou F, Zhang P, Wang H, Qu Z, Jia P, Yao Z, Shen G, Li G, Zhao G, Li J, Mao Y, Xie Z, Xu W, Xu Y, Xu Y (2017) Human type H vessels are a sensitive biomarker of bone mass. Cell Death Dis 8(5):e2760. https://doi.org/10.1038/cddis.2017.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou B, Lin W, Long Y, Yang Y, Zhang H, Wu K, Chu Q (2022) Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 7(1):95. https://doi.org/10.1038/s41392-022-00934-y

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hall DP, Kovall RA (2019) Structurally conserved binding motifs of transcriptional regulators to notch nuclear effector CSL. Exp Biol Med (Maywood) 244(17):1520–1529. https://doi.org/10.1177/1535370219877818

    Article  CAS  PubMed  Google Scholar 

  19. Díaz-Tocados JM, Herencia C, Martínez-Moreno JM, Montes DOA, Rodríguez-Ortiz ME, Vergara N, Blanco A, Steppan S, Almadén Y, Rodríguez M, Muñoz-Castañeda JR (2017) Magnesium Chloride promotes Osteogenesis through Notch signaling activation and expansion of Mesenchymal Stem Cells. Sci Rep 7(1):7839. https://doi.org/10.1038/s41598-017-08379-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Onder S, Calikoglu-Koyuncu AC, Kazmanli K, Urgen M, Kok FN, Torun-Kose G (2018) Magnesium doping on TiN coatings affects mesenchymal stem cell differentiation and proliferation positively in a dose-dependent manner. Biomed Mater Eng 29(4):427–438. https://doi.org/10.3233/BME-181000

    Article  CAS  PubMed  Google Scholar 

  21. Caolo V, Molin DG, Post MJ (2012) Notch regulation of hematopoiesis, endothelial precursor cells, and blood vessel formation: orchestrating the vasculature. Stem Cells Int 2012:805602. https://doi.org/10.1155/2012/805602

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela-Arispe ML (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell 130(4):691–703. https://doi.org/10.1016/j.cell.2007.06.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maes C, Clemens TL (2014) Angiogenic-osteogenic coupling: the endothelial perspective. Bonekey Rep 3:578. https://doi.org/10.1038/bonekey.2014.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li X, Wang Y, Shi L, Li B, Li J, Wei Z, Lv H, Wu L, Zhang H, Yang B, Xu X, Jiang J (2020) Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnology 18(1):113. https://doi.org/10.1186/s12951-020-00670-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montazersaheb S, Kabiri F, Saliani N, Nourazarian A, Avci ÇB, Rahbarghazi R, Nozad CH (2018) Prolonged incubation with Metformin decreased angiogenic potential in human bone marrow mesenchymal stem cells. Biomed Pharmacother 108:1328–1337. https://doi.org/10.1016/j.biopha.2018.09.135

    Article  CAS  PubMed  Google Scholar 

  26. Mauffrey C, Barlow BT, Smith W (2015) Management of segmental bone defects. J Am Acad Orthop Surg 23(3):143–153. https://doi.org/10.5435/JAAOS-D-14-00018

    Article  PubMed  Google Scholar 

  27. Vasyliev RG, Oksymets VM, Rodnichenko AE, Zlatska AV, Gubar OS, Gordiienko IM, Zubov DO (2017) Tissue-engineered bone for treatment of combat related limb injuries. Exp Oncol 39(3):191–196

    CAS  PubMed  Google Scholar 

  28. Xing J, Jin H, Hou T, Chang Z, Luo F, Wang P, Li Z, Xie Z, Xu J (2014) Establishment of a bilateral femoral large segmental bone defect mouse model potentially applicable to basic research in bone tissue engineering. J Surg Res 192(2):454–463. https://doi.org/10.1016/j.jss.2014.05.037

    Article  PubMed  Google Scholar 

  29. Sader MS, Martins VC, Gomez S, Legeros RZ, Soares GA (2013) Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach. Mater Sci Eng C Mater Biol Appl 33(7):4188–4196. https://doi.org/10.1016/j.msec.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Yeung K (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2(4):224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tarafder S, Dernell WS, Bandyopadhyay A, Bose S (2015) SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater 103(3):679–690. https://doi.org/10.1002/jbm.b.33239

    Article  CAS  PubMed  Google Scholar 

  32. Ziche M, Morbidelli L (2000) Nitric oxide and angiogenesis.

  33. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Pan Q, Xu J, He X, Li HA, Oldridge DA, Li G, Qin L (2021) Overview of methods for enhancing bone regeneration in distraction osteogenesis: potential roles of biometals. J Orthop Translat 27:110–118. https://doi.org/10.1016/j.jot.2020.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ohyama T 2019)New aspects of magnesium function: a key regulator in nucleosome self-assembly, chromatin folding and phase separation. Int J Mol Sci 20(17) https://doi.org/10.3390/ijms20174232

  36. Yamanaka R, Shindo Y, Oka K (2019) Magnesium is a key player in neuronal maturation and neuropathology. Int J Mol Sci 20(14) https://doi.org/10.3390/ijms20143439

  37. Zhang X, Zu H, Zhao D, Yang K, Tian S, Yu X, Lu F, Liu B, Yu X, Wang B, Wang W, Huang S, Wang Y, Wang Z, Zhang Z (2017) Ion channel functional protein kinase TRPM7 regulates Mg ions to promote the osteoinduction of human osteoblast via PI3K pathway: in vitro simulation of the bone-repairing effect of Mg-based alloy implant. Acta Biomater 63:369–382. https://doi.org/10.1016/j.actbio.2017.08.051

    Article  CAS  PubMed  Google Scholar 

  38. Feyerabend F, Witte F, Kammal M, Willumeit R (2006) Unphysiologically high magnesium concentrations support chondrocyte proliferation and redifferentiation. Tissue Eng 12(12):3545–3556. https://doi.org/10.1089/ten.2006.12.3545

    Article  CAS  PubMed  Google Scholar 

  39. Cipriano AF, Sallee A, Tayoba M, Cortez AM, Lin A, Guan RG, Zhao ZY, Liu H (2017) Cytocompatibility and early inflammatory response of human endothelial cells in direct culture with Mg-Zn-Sr alloys. Acta Biomater 48:499–520. https://doi.org/10.1016/j.actbio.2016.10.020

    Article  CAS  PubMed  Google Scholar 

  40. Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 10(6):2834–2842. https://doi.org/10.1016/j.actbio.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  41. Zhai W, Lu H, Wu C, Chen L, Lin X, Naoki K, Chen G, Chang J (2013) Stimulatory effects of the ionic products from Ca-Mg-Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater 9(8):8004–8014. https://doi.org/10.1016/j.actbio.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  42. Rankin EB, Giaccia AJ, Schipani E (2011) A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Curr Osteoporos Rep 9(2):46–52. https://doi.org/10.1007/s11914-011-0047-2

    Article  PubMed  PubMed Central  Google Scholar 

  43. Deng Z, Lin B, Jiang Z, Huang W, Li J, Zeng X, Wang H, Wang D, Zhang Y (2019) Hypoxia-mimicking cobalt-doped borosilicate bioactive glass scaffolds with enhanced angiogenic and osteogenic capacity for bone regeneration. Int J Biol Sci 15(6):1113–1124. https://doi.org/10.7150/ijbs.32358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97(4):1235–1294. https://doi.org/10.1152/physrev.00005.2017

    Article  CAS  PubMed  Google Scholar 

  45. Hellström M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalén M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780. https://doi.org/10.1038/nature05571

    Article  CAS  PubMed  Google Scholar 

  46. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104(9):3219–3224. https://doi.org/10.1073/pnas.0611206104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA 104(9):3225–3230. https://doi.org/10.1073/pnas.0611177104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tammela T, Zarkada G, Wallgard E, Murtomäki A, Suchting S, Wirzenius M, Waltari M, Hellström M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Ylä-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660. https://doi.org/10.1038/nature07083

    Article  CAS  PubMed  Google Scholar 

  49. Luo Z, Shang X, Zhang H, Wang G, Massey PA, Barton SR, Kevil CG, Dong Y (2019) Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis. Am J Pathol 189(8):1495–1500. https://doi.org/10.1016/j.ajpath.2019.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I, Singh M, Chien M, Tan C, Hongo JA, de Sauvage F, Plowman G, Yan M (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444(7122):1083–1087. https://doi.org/10.1038/nature05313

    Article  CAS  PubMed  Google Scholar 

  51. Ramasamy SK, Kusumbe AP, Wang L, Adams RH (2014) Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507(7492):376–380. https://doi.org/10.1038/nature13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ramasamy SK, Kusumbe AP, Schiller M, Zeuschner D, Bixel MG, Milia C, Gamrekelashvili J, Limbourg A, Medvinsky A, Santoro MM, Limbourg FP, Adams RH (2016) Blood flow controls bone vascular function and osteogenesis. Nat Commun 7:13601. https://doi.org/10.1038/ncomms13601

    Article  PubMed  PubMed Central  Google Scholar 

  53. Semenova D, Bogdanova M, Kostina A, Golovkin A, Kostareva A, Malashicheva A (2020) Dose-dependent mechanism of Notch action in promoting osteogenic differentiation of mesenchymal stem cells. Cell Tissue Res 379(1):169–179. https://doi.org/10.1007/s00441-019-03130-7

    Article  CAS  PubMed  Google Scholar 

  54. Yang M, Li CJ, Sun X, Guo Q, Xiao Y, Su T, Tu ML, Peng H, Lu Q, Liu Q, He HB, Jiang TJ, Lei MX, Wan M, Cao X, Luo XH (2017) MiR-497∼195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun 8:16003. https://doi.org/10.1038/ncomms16003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo CL (2022) Self-sustained regulation or self-perpetuating dysregulation: ROS-dependent HIF-YAP-Notch signaling as a double-edged sword on stem cell physiology and tumorigenesis. Front Cell Dev Biol 10:862791. https://doi.org/10.3389/fcell.2022.862791

    Article  PubMed  PubMed Central  Google Scholar 

  56. De Francesco EM, Maggiolini M, Musti AM 2018 Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci 19(7) https://doi.org/10.3390/ijms19072011

  57. Nathan J, Ramachandran A (2022) Efficacy of marine biomolecules on angiogenesis by targeting hypoxia inducible factor/vascular endothelial growth factor signaling in zebrafish model. J Biochem Mol Toxicol 36(2):e22954. https://doi.org/10.1002/jbt.22954

    Article  CAS  PubMed  Google Scholar 

  58. Niu H, Gao N, Dang Y, Guan Y, Guan J (2022) Delivery of VEGF and delta-like 4 to synergistically regenerate capillaries and arterioles in ischemic limbs. Acta Biomater 143:295–309. https://doi.org/10.1016/j.actbio.2022.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T (2017) The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20(3):291–302. https://doi.org/10.1007/s10456-017-9541-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee HW, Shin JH, Simons M (2022) Flow goes forward and cells step backward: endothelial migration. Exp Mol Med 54(6):711–719. https://doi.org/10.1038/s12276-022-00785-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Etienne-Manneville S (2013) Microtubules in cell migration. Annu Rev Cell Dev Biol 29:471–499. https://doi.org/10.1146/annurev-cellbio-101011-155711

    Article  CAS  PubMed  Google Scholar 

  62. Michaelis UR (2014) Mechanisms of endothelial cell migration. Cell Mol Life Sci 71(21):4131–4148. https://doi.org/10.1007/s00018-014-1678-0

    Article  CAS  PubMed  Google Scholar 

  63. Hou CY, Ma CY, Yuh CH (2022) WNK1 kinase signaling in metastasis and angiogenesis. Cell Signal 96:110371. https://doi.org/10.1016/j.cellsig.2022.110371

    Article  CAS  PubMed  Google Scholar 

  64. Li M, Wu Y, Ye L 2022 The role of amino acids in endothelial biology and function. Cells-Basel 11(8) https://doi.org/10.3390/cells11081372

  65. Chen J, Jiang L, Yu XH, Hu M, Zhang YK, Liu X, He P, Ouyang X (2021) Endocan: a key player of cardiovascular disease. Front Cardiovasc Med 8:798699. https://doi.org/10.3389/fcvm.2021.798699

    Article  CAS  PubMed  Google Scholar 

  66. Kristensen HB, Andersen TL, Marcussen N, Rolighed L, Delaisse JM (2014) Osteoblast recruitment routes in human cancellous bone remodeling. Am J Pathol 184(3):778–789. https://doi.org/10.1016/j.ajpath.2013.11.022

    Article  CAS  PubMed  Google Scholar 

  67. Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19(2):329–344. https://doi.org/10.1016/j.devcel.2010.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang ZZ, Zhou YF, Li WP, Jiang C, Chen Z, Luo H, Song B (2019) Local administration of magnesium promotes meniscal healing through homing of endogenous stem cells: a proof-of-concept study. Am J Sports Med 47(4):954–967. https://doi.org/10.1177/0363546518820076

    Article  PubMed  Google Scholar 

  69. Barkefors I, Le Jan S, Jakobsson L, Hejll E, Carlson G, Johansson H, Jarvius J, Park JW, Li JN, Kreuger J (2008) Endothelial cell migration in stable gradients of vascular endothelial growth factor A and fibroblast growth factor 2: effects on chemotaxis and chemokinesis. J Biol Chem 283(20):13905–13912. https://doi.org/10.1074/jbc.M704917200

    Article  CAS  PubMed  Google Scholar 

  70. Caiado F, Real C, Carvalho T, Dias S (2008) Notch pathway modulation on bone marrow-derived vascular precursor cells regulates their angiogenic and wound healing potential. PLoS ONE 3(11):e3752. https://doi.org/10.1371/journal.pone.0003752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Koyanagi M, Bushoven P, Iwasaki M, Urbich C, Zeiher AM, Dimmeler S (2007) Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res 101(11):1139–1145. https://doi.org/10.1161/CIRCRESAHA.107.151381

    Article  CAS  PubMed  Google Scholar 

  72. Li H, Yu B, Zhang Y, Pan Z, Xu W, Li H (2006) Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun 341(2):320–325. https://doi.org/10.1016/j.bbrc.2005.12.182

    Article  CAS  PubMed  Google Scholar 

  73. Xu LL, Fu HX, Zhang JM, Feng FE, Wang QM, Zhu XL, Xue J, Wang CC, Chen Q, Liu X, Wang YZ, Qin YZ, Kong Y, Chang YJ, Xu LP, Liu KY, Huang XJ, Zhang XH (2017) Impaired function of bone marrow mesenchymal stem cells from immune thrombocytopenia patients in inducing regulatory dendritic cell differentiation through the Notch-1/Jagged-1 signaling pathway. Stem Cells Dev 26(22):1648–1661. https://doi.org/10.1089/scd.2017.0078

    Article  CAS  PubMed  Google Scholar 

  74. Hu N, Zou L (2022) Multiple functions of Hes genes in the proliferation and differentiation of neural stem cells. Ann Anat 239:151848. https://doi.org/10.1016/j.aanat.2021.151848

    Article  PubMed  Google Scholar 

Download references

Funding

This research was continuously funded by National Natural Science Foundation of China (No. 82172432; 82102568 and 82001319), National & Local Joint Engineering Research Center of Orthopaedic Biomaterials (XMHT20190204007), Shenzhen High-level Hospital Construction Fund, Shenzhen Key Medical Discipline Construction Fund (No. SZXK023), Shenzhen “San-Ming” Project of Medicine (No. SZSM201612092), Research and Development Projects of Shenzhen (No. Z2021N054), Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012586), Bethune Charitable Foundation and CSPC Osteoporosis Research Foundation Project (No. G-X-2020–1107-21), and The Scientific Research Foundation of PEKING UNIVERSITY SHENZHEN HOSPITAL (No. KYQD2021099).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H.Z. and F.Y.; methodology, T.Q. and Y.Z.; software, W.Z. and G.L.; formal analysis, J.W. and B.Z.; investigation, H.Q., J.W., and B.Z.; data curation, Y.Z., Y.C., and W.Z.; writing—original draft preparation, H.Q., J.W., and B.Z.; writing—review and editing, F.Y. and H.Z.; supervision, F.Y. and H.Z.; funding acquisition, F.Y. and H.Z. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Fei Yu or Hui Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Weng, J., Zhou, B. et al. Magnesium Ions Promote In Vitro Rat Bone Marrow Stromal Cell Angiogenesis Through Notch Signaling. Biol Trace Elem Res 201, 2823–2842 (2023). https://doi.org/10.1007/s12011-022-03364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03364-7

Keywords

Navigation