Skip to main content

Trace elements in Foodstuffs from the Mediterranean Basin—Occurrence, Risk Assessment, Regulations, and Prevention strategies: A review

Abstract

Trace elements (TEs) are chemical compounds that naturally occur in the earth’s crust and in living organisms at low concentrations. Anthropogenic activities can significantly increase the level of TEs in the environment and finally enter the food chain. Toxic TEs like cadmium, lead, arsenic, and mercury have no positive role in a biological system and can cause harmful effects on human health. Ingestion of contaminated food is a typical route of TEs intake by humans. Recent data about the occurrence of TEs in food available in the Mediterranean countries are considered in this review. Analytical methods are also discussed. Furthermore, a discussion of existing international agency regulations will be given. The risk associated with the dietary intake of TEs was estimated by considering consumer exposure and threshold values such as Benchmark dose lower confidence limit and provisional tolerable weekly intake established by the European Food Safety Authority and the Joint FAO/WHO Expert Committee on Food Additives, respectively. Finally, several remediation approaches to minimize TE contamination in foodstuffs were discussed including chemical, biological, biotechnological, and nanotechnological methods. The results of this study proved the occurrence of TEs contamination at high levels in vegetables and fish from some Mediterranean countries. Lead and cadmium are more abundant in foodstuffs than other toxic trace elements. Geographical variations in TE contamination of food crops clearly appear, with a greater risk in developing countries. There is still a need for the regular monitoring of these toxic element levels in food items to ensure consumer protection.

This is a preview of subscription content, access via your institution.

Abbreviations

AAS:

Atomic Absorption Spectrometry

ADI:

Acceptable Daily Intake

ATSDR:

Agency for Toxic Substances and Disease Registry

As:

Arsenic

B:

Boron

BMDL:

Benchmark dose lower confidence limit

Cd:

Cadmium

Co:

Cobalt

Cr:

Chromium

Cu:

Copper

CV-AAS:

Cold Vapor Atomic Absorption Spectroscopy

EC:

European Commission

EFSA:

European Food Safety Authority

EDTA:

Ethylenediaminetetraacetic acid

EU:

European Union

F-AAS:

Flame Atomic Absorption Spectroscopy

FAO:

Food and Agriculture Organization

Fe:

Iron

GF-AAS:

Graphite Furnace Atomic Absorption Spectroscopy

Hg:

Mercury

HG-AAS:

Hydride Generation Atomic Absorption Spectroscopy

IARC:

International Agency for Research on Cancer

ICP-AES:

Inductively Coupled Plasma Atomic Emission Spectrometry

ICP-MS:

Inductively Coupled Plasma Mass Spectrophotometer

ICP-OES:

Inductively Coupled Plasma Optical Emission Spectrometry

In-As:

Inorganic arsenic

INAA:

Instrumental Neutron Activation Analysis

JECFA:

Joint FAO/WHO Expert Committee on Food Additives

MeHg+ :

Methyl mercury

MLs:

Maximum limits

Mn:

Manganese

MRLs:

Minimum risk levels

Ni:

Nickel

Pb:

Lead

PTMI:

Provisional Tolerable Monthly Intake

PTWI:

Provisional Tolerable Weekly Intake

RASFF:

Rapid Alert System for Food and Feed

ROS:

Reactive oxygen species

Sb:

Antimony

Sr:

Strontium

TDI:

Tolerable Daily Intake

TEs:

Trace elements

TWI:

Tolerable Weekly Intake

UNESCO:

United Nations Educational, Scientific and Cultural Organization

WHO:

World Health Organization

XRF:

X-ray fluorescence

Zn:

Zinc

References

  1. Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  2. Madejón P, Domínguez MT, Madejón E et al (2018) Soil-plant relationships and contamination by trace elements: a review of twenty years of experimentation and monitoring after the Aznalcóllar (SW Spain) mine accident. Sci Total Environ 625:50–63. https://doi.org/10.1016/j.scitotenv.2017.12.277

    CAS  Article  PubMed  Google Scholar 

  3. Liu L, Yin Y, Hu L et al (2020) Revisiting the forms of trace elements in biogeochemical cycling: analytical needs and challenges. TrAC, Trends Anal Chem 129:115953. https://doi.org/10.1016/j.trac.2020.115953

    CAS  Article  Google Scholar 

  4. Mahajan P, Kaushal J (2018) Role of phytoremediation in reducing cadmium toxicity in soil and water. Journal of Toxicology 2018:1–16. https://doi.org/10.1155/2018/4864365

    CAS  Article  Google Scholar 

  5. Cangemi M, Speziale S, Madonia P et al (2017) Potentially harmful elements released by volcanic ashes: examples from the Mediterranean area. J Volcanol Geoth Res 337:16–28. https://doi.org/10.1016/j.jvolgeores.2017.03.015

    CAS  Article  Google Scholar 

  6. Rodríguez Martín JA, Ramos-Miras JJ, Boluda R, Gil C (2013) Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma 200–201:180–188. https://doi.org/10.1016/j.geoderma.2013.02.014

    CAS  Article  Google Scholar 

  7. Fan Y, Zhu T, Li M et al (2017) Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China. Journal of Healthcare Engineering 2017:1–9. https://doi.org/10.1155/2017/4124302

    Article  Google Scholar 

  8. Gupta N, Yadav KK, Kumar V et al (2019) Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - a review. Sci Total Environ 651:2927–2942. https://doi.org/10.1016/j.scitotenv.2018.10.047

    CAS  Article  PubMed  Google Scholar 

  9. Singh S, Kumar M (2006) Heavy Metal Load Of Soil, Water and vegetables in per urban Delhi. Environ Monit Assess 120:79–91. https://doi.org/10.1007/s10661-005-9050-3

    CAS  Article  PubMed  Google Scholar 

  10. Nuapia Y, Chimuka L, Cukrowska E (2018) Assessment of heavy metals in raw food samples from open markets in two African cities. Chemosphere 196:339–346. https://doi.org/10.1016/j.chemosphere.2017.12.134

    CAS  Article  PubMed  Google Scholar 

  11. Antoine JMR, Hoo Fung LA, Grant CN et al (2012) Dietary intake of minerals and trace elements in rice on the Jamaican market. J Food Compos Anal 26:111–121. https://doi.org/10.1016/j.jfca.2012.01.003

    CAS  Article  Google Scholar 

  12. Apostoli P (2002) Elements in environmental and occupational medicine. J Chromatogr B 778:63–97. https://doi.org/10.1016/S0378-4347(01)00442-X

    CAS  Article  Google Scholar 

  13. Tam M, Gómez S, González-Gross M, Marcos A (2003) Possible roles of magnesium on the immune system. Eur J Clin Nutr 57:1193–1197. https://doi.org/10.1038/sj.ejcn.1601689

    CAS  Article  PubMed  Google Scholar 

  14. El-Kady AA, Abdel-Wahhab MA (2018) Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci Technol 75:36–45. https://doi.org/10.1016/j.tifs.2018.03.001

    CAS  Article  Google Scholar 

  15. Pecina V, Brtnický M, Baltazár T et al (2021) Human health and ecological risk assessment of trace elements in urban soils of 101 cities in China: a meta-analysis. Chemosphere 267:129215. https://doi.org/10.1016/j.chemosphere.2020.129215

    CAS  Article  PubMed  Google Scholar 

  16. Rai PK, Lee SS, Zhang M et al (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 125:365–385. https://doi.org/10.1016/j.envint.2019.01.067

    CAS  Article  PubMed  Google Scholar 

  17. Ali H, Khan E (2019) Trophic transfer, bioaccumulation, and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/webs—concepts and implications for wildlife and human health. Hum Ecol Risk Assess Int J 25:1353–1376. https://doi.org/10.1080/10807039.2018.1469398

    CAS  Article  Google Scholar 

  18. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, Fla

    Google Scholar 

  19. Wu X, Cobbina SJ, Mao G et al (2016) A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res 23:8244–8259. https://doi.org/10.1007/s11356-016-6333-x

    CAS  Article  Google Scholar 

  20. ATSDR (2019) Substance Priority List. https://www.atsdr.cdc.gov/SPL/index.html. Accessed 15 Jul 2021

  21. WHO (2007) Health risks of heavy metals from long-range transboundary air pollution. WHO Regional Office for Europe, Copenhagen

    Google Scholar 

  22. Feki-Tounsi M, Hamza-Chaffai A (2014) Cadmium as a possible cause of bladder cancer: a review of accumulated evidence. Environ Sci Pollut Res 21:10561–10573. https://doi.org/10.1007/s11356-014-2970-0

    CAS  Article  Google Scholar 

  23. Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23:783–792. https://doi.org/10.1007/s10534-010-9328-y

    CAS  Article  PubMed  Google Scholar 

  24. Peng Q, Bakulski KM, Nan B, Park SK (2017) Cadmium and Alzheimer’s disease mortality in U.S. adults: updated evidence with a urinary biomarker and extended follow-up time. Environ Res 157:44–51. https://doi.org/10.1016/j.envres.2017.05.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. ATSDR (1999) Toxicological Profile For Mercury – update. Agency for Toxic Substances and Disease Registry. U.S. Department of Health and Human Services, Atlanta, GA

  26. UNEP (2002) Global Mercury Assessment. United Nations Environment Programme, Geneva

    Google Scholar 

  27. Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization 11

  28. Signes-Pastor AJ, Vioque J, Navarrete-Muñoz EM et al (2019) Inorganic arsenic exposure and neuropsychological development of children of 4–5 years of age living in Spain. Environ Res 174:135–142. https://doi.org/10.1016/j.envres.2019.04.028

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Masindi V, Muedi KL (2018) Environmental contamination by heavy metals. In: Saleh HE-DM, Aglan RF (eds) Heavy Metals. InTech

  30. Ferreira CSS, Seifollahi-Aghmiuni S, Destouni G et al (2022) Soil degradation in the European Mediterranean region: processes, status and consequences. Sci Total Environ 805:150106. https://doi.org/10.1016/j.scitotenv.2021.150106

    CAS  Article  PubMed  Google Scholar 

  31. EC (2020) The Mediterranean Region. In: European Commission. https://ec.europa.eu/environment/nature/natura2000/biogeog_regions/mediterranean/index_en.htm. Accessed 8 Oct 2021

  32. Estruch R, Ros E, Salas-Salvadó J et al (2018) Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 378:e34. https://doi.org/10.1056/NEJMoa1800389

    CAS  Article  PubMed  Google Scholar 

  33. UNESCO (2010) Decision of the Intergovernmental Committee: 5.COM 6.41. https://ich.unesco.org/en/decisions. Accessed 12 Oct 2021

  34. Chen L, Zhou S, Shi Y et al (2018) Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci Total Environ 615:141–149. https://doi.org/10.1016/j.scitotenv.2017.09.230

    CAS  Article  PubMed  Google Scholar 

  35. Aydin ME, Aydin S, Beduk F et al (2015) Effects of long-term irrigation with untreated municipal wastewater on soil properties and crop quality. Environ Sci Pollut Res 22:19203–19212. https://doi.org/10.1007/s11356-015-5123-1

    CAS  Article  Google Scholar 

  36. Sifou A, Benabbou A, Ben Aakame R et al (2021) Trace elements in breakfast cereals and exposure assessment in moroccan population: case of lead and cadmium. Biol Trace Elem Res 199:1268–1275. https://doi.org/10.1007/s12011-020-02265-x

    CAS  Article  PubMed  Google Scholar 

  37. Chaoua S, Boussaa S, El Gharmali A, Boumezzough A (2019) Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agric Sci 18:429–436. https://doi.org/10.1016/j.jssas.2018.02.003

    Article  Google Scholar 

  38. Douay F, Roussel H, Fourrier H et al (2007) Investigation of heavy metal concentrations on urban soils, dust and vegetables nearby a former smelter site in Mortagne du Nord, Northern France. J Soils Sediments 7:143–146. https://doi.org/10.1065/jss2007.02.205

    CAS  Article  Google Scholar 

  39. Amer MM, Sabry BA, Marrez DA et al (2019) Exposure assessment of heavy metal residues in some Egyptian fruits. Toxicol Rep 6:538–543. https://doi.org/10.1016/j.toxrep.2019.06.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Bua DG, Annuario G, Albergamo A et al (2016) Heavy metals in aromatic spices by inductively coupled plasma-mass spectrometry. Food Additives & Contaminants: Part B 9:210–216. https://doi.org/10.1080/19393210.2016.1175516

    CAS  Article  Google Scholar 

  41. Messaoudi M, Begaa S (2018) Application of INAA technique for analysis of essential trace and toxic elements in medicinal seeds of Carum carvi L. & Foeniculum vul-gare Mill. used in Algeria. Journal of Applied Research on Medicinal and Aromatic Plants 9:39–45. https://doi.org/10.1016/j.jarmap.2018.01.001

    Article  Google Scholar 

  42. Abdel-Kader HH, Mourad MH (2020) Trace elements exposure influences proximate body composition and antioxidant enzyme activities of the species tilapia and catfish in Burullus Lake—Egypt: human risk assessment for the consumers. Environ Sci Pollut Res 27:43670–43681. https://doi.org/10.1007/s11356-020-10207-2

    CAS  Article  Google Scholar 

  43. Milošković A, Milošević Đ, Radojković N et al (2018) Potentially toxic elements in freshwater (Alburnus spp.) and marine (Sardina pilchardus) sardines from the Western Balkan Peninsula: an assessment of human health risk and management. Sci Total Environ 644:899–906. https://doi.org/10.1016/j.scitotenv.2018.07.041

    CAS  Article  PubMed  Google Scholar 

  44. Galimberti C, Corti I, Cressoni M et al (2016) Evaluation of mercury, cadmium and lead levels in fish and fishery products imported by air in North Italy from extra-European Union Countries. Food Control 60:329–337. https://doi.org/10.1016/j.foodcont.2015.08.009

    CAS  Article  Google Scholar 

  45. Hou D, O’Connor D, Nathanail P et al (2017) Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review. Environ Pollut 231:1188–1200. https://doi.org/10.1016/j.envpol.2017.07.021

    CAS  Article  PubMed  Google Scholar 

  46. Legittimo PC, Piccardi G, Martini M (1986) Mercury pollution in the surface environment of a volcanic area. Chem Ecol 2:219–231. https://doi.org/10.1080/02757548608080728

    Article  Google Scholar 

  47. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. https://doi.org/10.1007/s10311-010-0297-8

    CAS  Article  Google Scholar 

  48. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    CAS  Article  Google Scholar 

  49. Vermette SJ, Bingham VG (1986) Trace elements in frobisher bay rainwater. ARCTIC 39:177–179. https://doi.org/10.14430/arctic2067

  50. Al-Jaboobi M, Zouahri A, Tijane M et al (2014) Evaluation of heavy metals pollution in groundwater, soil and some vegetables irrigated with wastewater in the skhirat region “Morocco.” Journal of Materials and Environmental Science 5:961–966

    Google Scholar 

  51. Béjaoui I, Kolsi-Benzina N, Sappin-Didier V, Munoz M (2016) Health risk assessment in calcareous agricultural soils contaminated by metallic mining activity under mediterranean climate. CLEAN – Soil. Air, Water 44:1385–1395. https://doi.org/10.1002/clen.201500512

    CAS  Article  Google Scholar 

  52. Ramadan AA, Mandil H (2009) Wastewater irrigation and soil contamination effect on some leafy vegetables grown in syrian Aleppo City. Asian J Chem 21:3243–3252

    CAS  Google Scholar 

  53. Rashed MN (2001) Cadmium and Lead Levels in Fish (Tilapia Nilotica) Tissues as biological indicator for lake water pollution. Environ Monit Assess 68:75–89. https://doi.org/10.1023/A:1010739023662

    CAS  Article  PubMed  Google Scholar 

  54. Skordas K, Papastergios G, Filippidis A (2013) Major and trace element contents in apples from a cultivated area of central Greece. Environ Monit Assess 185:8465–8471. https://doi.org/10.1007/s10661-013-3188-1

    CAS  Article  PubMed  Google Scholar 

  55. Mor F, Ceylan S (2008) Cadmium and lead contamination in vegetables collected from industrial, traffic and rural areas in Bursa Province, Turkey. Food Additives & Contaminants: Part A 25:611–615. https://doi.org/10.1080/02652030701691531

    CAS  Article  Google Scholar 

  56. Hamurcu M, Özcan MM, Dursun N, Gezgin S (2010) Mineral and heavy metal levels of some fruits grown at the roadsides. Food Chem Toxicol 48:1767–1770. https://doi.org/10.1016/j.fct.2010.03.031

    CAS  Article  PubMed  Google Scholar 

  57. Paradelo R, Villada A, Barral MT (2020) Heavy metal uptake of lettuce and ryegrass from urban waste composts. Int J Environ Res Public Health 17:2887. https://doi.org/10.3390/ijerph17082887

    CAS  Article  PubMed Central  Google Scholar 

  58. Ercilla-Montserrat M, Muñoz P, Montero JI et al (2018) A study on air quality and heavy metals content of urban food produced in a Mediterranean city (Barcelona). J Clean Prod 195:385–395. https://doi.org/10.1016/j.jclepro.2018.05.183

    CAS  Article  Google Scholar 

  59. Duong TTT, Lee B-K (2009) Partitioning and mobility behavior of metals in road dusts from national-scale industrial areas in Korea. Atmos Environ 43:3502–3509. https://doi.org/10.1016/j.atmosenv.2009.04.036

    CAS  Article  Google Scholar 

  60. Jan FA, Ishaq M, Ihsanullah I, Asim SM (2010) Multivariate statistical analysis of heavy metals pollution in industrial area and its comparison with relatively less polluted area: a case study from the City of Peshawar and district Dir Lower. J Hazard Mater 176:609–616. https://doi.org/10.1016/j.jhazmat.2009.11.073

    CAS  Article  PubMed  Google Scholar 

  61. Hwang T, Neculita CM, Han J-I (2012) Biosulfides precipitation in weathered tailings amended with food waste-based compost and zeolite. J Environ Qual 41:1857–1864. https://doi.org/10.2134/jeq2011.0462

    CAS  Article  PubMed  Google Scholar 

  62. Álvarez-Ayuso E, Abad-Valle P (2017) Trace element levels in an area impacted by old mining operations and their relationship with beehive products. Sci Total Environ 599–600:671–678. https://doi.org/10.1016/j.scitotenv.2017.05.030

    CAS  Article  PubMed  Google Scholar 

  63. Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619. https://doi.org/10.1016/j.fct.2009.11.041

    CAS  Article  PubMed  Google Scholar 

  64. Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil: key concepts and metal bioavailability. J Environ Qual 34:49–63. https://doi.org/10.2134/jeq2005.0049dup

    CAS  Article  PubMed  Google Scholar 

  65. Ali SM, Pervaiz A, Afzal B et al (2014) Open dumping of municipal solid waste and its hazardous impacts on soil and vegetation diversity at waste dumping sites of Islamabad city. Journal of King Saud University - Science 26:59–65. https://doi.org/10.1016/j.jksus.2013.08.003

    Article  Google Scholar 

  66. Nakhaei M, Amiri V, Rezaei K, Moosaei F (2015) An investigation of the potential environmental contamination from the leachate of the Rasht waste disposal site in Iran. Bull Eng Geol Environ 74:233–246. https://doi.org/10.1007/s10064-014-0577-9

    CAS  Article  Google Scholar 

  67. Dhaliwal SS, Naresh RK, Mandal A et al (2019) Effect of manures and fertilizers on soil physical properties, build-up of macro and micronutrients and uptake in soil under different cropping systems: a review. J Plant Nutr 42:2873–2900. https://doi.org/10.1080/01904167.2019.1659337

    CAS  Article  Google Scholar 

  68. Gupta DK, Chatterjee S, Datta S et al (2014) Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 108:134–144. https://doi.org/10.1016/j.chemosphere.2014.01.030

    CAS  Article  PubMed  Google Scholar 

  69. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:1–20. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  70. Yadav IC, Devi NL, Syed JH et al (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137. https://doi.org/10.1016/j.scitotenv.2014.12.041

    CAS  Article  PubMed  Google Scholar 

  71. Senesil GS, Baldassarre G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377. https://doi.org/10.1016/S0045-6535(99)00115-0

    Article  Google Scholar 

  72. Valette-Silver NJ, Riedel GF, Crecelius EA et al (1999) Elevated arsenic concentrations in bivalves from the southeast coasts of the USA. Mar Environ Res 48:311–333. https://doi.org/10.1016/S0141-1136(99)00057-4

    CAS  Article  Google Scholar 

  73. Chiroma TM, Abdulkarim BI, Kefas HM (2007) The impact of pesticide application on heavy metal (Cd, Pb and Cu) levels in spinach. Leonardo El J Pract Technol 117–122

  74. Alloway BJ (2013) Sources of Heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy Metals in Soils. Springer, Netherlands, Dordrecht, pp 11–50

    Chapter  Google Scholar 

  75. Eckel H, Roth U, Döhler H, et al (2005) Assessment and Reduction of heavy metal input into agro-ecosystems: final report of the EU-concerted action AROMIS. Darmstadt (Germany) KTBL

  76. Angino EE, Magnuson LM, Waugh TC et al (1970) Arsenic in detergents: possible danger and pollution hazard. Science 168:389–392. https://doi.org/10.1126/science.168.3929.389

    CAS  Article  PubMed  Google Scholar 

  77. Redan BW (2020) Processing aids in food and beverage manufacturing: potential source of elemental and trace metal contaminants. J Agric Food Chem 68:13001–13007. https://doi.org/10.1021/acs.jafc.9b08066

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Tanabe CK, Nelson J, Ebeler SE (2019) Current perspective on arsenic in wines: analysis, speciation, and changes in composition during production. J Agric Food Chem 67:4154–4159. https://doi.org/10.1021/acs.jafc.9b00634

    CAS  Article  PubMed  Google Scholar 

  79. Stilwell DE, Musante CL (1994) Lead content in grapefruit juice and its uptake upon storage in open containers. J Sci Food Agric 66:405–410. https://doi.org/10.1002/jsfa.2740660320

    CAS  Article  Google Scholar 

  80. Singh S, Parihar P, Singh R et al (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6. https://doi.org/10.3389/fpls.2015.01143

  81. de Paiva MD, da Costa Marques MR, Baptista DF, Buss DF (2015) Metal bioavailability and toxicity in freshwaters. Environ Chem Lett 13:69–87. https://doi.org/10.1007/s10311-015-0491-9

    CAS  Article  Google Scholar 

  82. Kumar Yadav K, Gupta N, Kumar A et al (2018) Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng 120:274–298. https://doi.org/10.1016/j.ecoleng.2018.05.039

    Article  Google Scholar 

  83. Lente I, Ofosu-Anim J, Brimah AK, Atiemo S (2014) Heavy metal pollution of vegetable crops irrigated with wastewater in Accra, Ghana. West Afr J App Ecol 22:41–58

    Google Scholar 

  84. He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140. https://doi.org/10.1016/j.jtemb.2005.02.010

    CAS  Article  PubMed  Google Scholar 

  85. Abernathy CO, Liu Y-P, Longfellow D et al (1999) Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107:5

    Article  Google Scholar 

  86. Bernhoft RA (2013) Cadmium toxicity and treatment. Scientific World Journal 2013:1–7. https://doi.org/10.1155/2013/394652

    CAS  Article  Google Scholar 

  87. Gallagher CM, Meliker JR (2010) Blood and urine cadmium, blood pressure, and hypertension: a systematic review and meta-analysis. Environ Health Perspect 118:1676–1684. https://doi.org/10.1289/ehp.1002077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Patrick L (2006) Lead toxicity part II: the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11:114–127

    PubMed  Google Scholar 

  89. Rahman MK, Choudhary MI, Arif M, Morshed MM (2014) Dopamine-β-hydroxylase activity and levels of its cofactors and other biochemical parameters in the serum of arsenicosis patients of Bangladesh 10:9

    Google Scholar 

  90. Weldon MM (2000) Mercury poisoning associated with a Mexican beauty cream. West J Med 173:15–18. https://doi.org/10.1136/ewjm.173.1.15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. IARC (2006) Inorganic and organic lead compunds. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer, Lyon, France

  92. IARC (2004) Tobacco smoke and involuntary smoking. Views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Lyon, 11 - 18 June 2002. IARC, Lyon

  93. IARC (1993) Beryllium, cadmium, mercury and exposures in the glass manufacturing industry. Views and expert opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Lyon, 9–16 February 1993. World Health Organization, Geneva

  94. Lee M-Y, Bae O-N, Chung S-M et al (2002) Enhancement of platelet aggregation and thrombus formation by arsenic in drinking water: a contributing factor to cardiovascular disease. Toxicol Appl Pharmacol 179:83–88. https://doi.org/10.1006/taap.2001.9356

    CAS  Article  PubMed  Google Scholar 

  95. Nizam S, Kato M, Yatsuya H et al (2013) Differences in urinary arsenic metabolites between diabetic and non-diabetic subjects in Bangladesh. IJERPH 10:1006–1019. https://doi.org/10.3390/ijerph10031006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Hopenhayn C, Huang B, Christian J et al (2003) Profile of urinary arsenic metabolites during pregnancy. Environ Health Perspect 111:1888–1891. https://doi.org/10.1289/ehp.6254

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Rahman A, Kumarathasan P, Gomes J (2016) Infant and mother related outcomes from exposure to metals with endocrine disrupting properties during pregnancy. Sci Total Environ 569–570:1022–1031. https://doi.org/10.1016/j.scitotenv.2016.06.134

    CAS  Article  PubMed  Google Scholar 

  98. Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Envir Health Rpt 1:132–147. https://doi.org/10.1007/s40572-014-0012-1

    Article  Google Scholar 

  99. Hubaux R, Becker-Santos DD, Enfield KS et al (2013) Molecular features in arsenic-induced lung tumors. Mol Cancer 12:20. https://doi.org/10.1186/1476-4598-12-20

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Lin H-J, Sung T-I, Chen C-Y, Guo H-R (2013) Arsenic levels in drinking water and mortality of liver cancer in Taiwan. J Hazard Mater 262:1132–1138. https://doi.org/10.1016/j.jhazmat.2012.12.049

    CAS  Article  PubMed  Google Scholar 

  101. Meliker JR, Slotnick MJ, AvRuskin GA et al (2010) Lifetime exposure to arsenic in drinking water and bladder cancer: a population-based case–control study in Michigan, USA. Cancer Causes Control 21:745–757. https://doi.org/10.1007/s10552-010-9503-z

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rossman T (2004) Evidence that arsenite acts as a cocarcinogen in skin cancer. Toxicol Appl Pharmacol 198:394–404. https://doi.org/10.1016/j.taap.2003.10.016

    CAS  Article  PubMed  Google Scholar 

  103. Smith AH, Marshall G, Yuan Y et al (2006) Increased mortality from lung cancer and bronchiectasis in young adultsafter exposure to arsenic in utero and in early childhood. Environ Health Perspect 114:1293–1296. https://doi.org/10.1289/ehp.8832

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Ferrario D, Gribaldo L, Hartung T (2016) Arsenic exposure and immunotoxicity: a review including the possible influence of age and sex. Curr Envir Health Rpt 3:1–12. https://doi.org/10.1007/s40572-016-0082-3

    CAS  Article  Google Scholar 

  105. Rahman M, Tondel M, Ahmad SA et al (1999) Hypertension and arsenic exposure in Bangladesh. Hypertension 33:74–78. https://doi.org/10.1161/01.HYP.33.1.74

    CAS  Article  PubMed  Google Scholar 

  106. Jin T, Nordberg M, Frech W et al (2002) Cadmium biomonitoring and renal dysfunction among a population environmentally exposed to cadmium from smelting in China (ChinaCad). Biometals 15:397–410

    CAS  PubMed  Article  Google Scholar 

  107. Jiang L-F, Yao T-M, Zhu Z-L, et al (2007) Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1774:1414–1421. https://doi.org/10.1016/j.bbapap.2007.08.014

  108. Waalkes M (2003) Cadmium carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 533:107–120. https://doi.org/10.1016/j.mrfmmm.2003.07.011

    CAS  Article  PubMed  Google Scholar 

  109. Nagata C (2005) Urinary Cadmium and Serum Levels of Estrogens and Androgens in Postmenopausal Japanese Women. Cancer Epidemiol Biomark Prev 14:705–708. https://doi.org/10.1158/1055-9965.EPI-04-0619

    CAS  Article  Google Scholar 

  110. Ogawa T, Kobayashi E, Okubo Y et al (2004) Relationship among prevalence of patients with Itai-itai disease, prevalence of abnormal urinary findings, and cadmium concentrations in rice of individual hamlets in the Jinzu River basin, Toyama prefecture of Japan. Int J Environ Health Res 14:243–252. https://doi.org/10.1080/09603120410001725586

    CAS  Article  PubMed  Google Scholar 

  111. Horiguchi H, Teranlshii H, Nilya K et al (1994) Hypoproduction of erythropoietin contributes to anemia in chronic cadmium intoxication: clinical study on Itai-itai disease in Japan. Arch Toxicol 68:632–636

    CAS  PubMed  Article  Google Scholar 

  112. Nordberg GF (2004) Cadmium and health in the 21st Century – historical remarks and trends for the future. Biometals 17:485–489. https://doi.org/10.1023/B:BIOM.0000045726.75367.85

    CAS  Article  PubMed  Google Scholar 

  113. Seidal K, Jorgensen N, Elinder C et al (1993) Fatal cadmium-induced pneumonitis. Scand J Work Environ Health 19:429–431. https://doi.org/10.5271/sjweh.1450

    CAS  Article  PubMed  Google Scholar 

  114. Järup L (2002) Cadmium overload and toxicity. Nephrol Dial Transplant 17:35–39. https://doi.org/10.1093/ndt/17.suppl_2.35

    Article  PubMed  Google Scholar 

  115. Apostoli P, Bellini A, Porru S, Bisanti L (2000) The effect of lead on male fertility: a time to pregnancy (TTP) study. Am J Ind Med 38:310–315

    CAS  PubMed  Article  Google Scholar 

  116. Levin SM, Goldberg M (2000) Clinical evaluation and management of lead-exposed construction workers. Am J Ind Med 37:23–43

    CAS  PubMed  Article  Google Scholar 

  117. Odongo AO, Moturi WN, Mbuthia EK (2016) Heavy metals and parasitic geohelminths toxicity among geophagous pregnant women: a case study of Nakuru Municipality, Kenya. Environ Geochem Health 38:123–131. https://doi.org/10.1007/s10653-015-9690-3

    CAS  Article  PubMed  Google Scholar 

  118. Hubbs-Tait L, Nation JR, Krebs NF, Bellinger DC (2005) Neurotoxicants, micronutrients, and social environments: individual and combined effects on children’s development. Psychol Sci Public Interest 6:57–121. https://doi.org/10.1111/j.1529-1006.2005.00024.x

    Article  PubMed  Google Scholar 

  119. Hsu P-C, Guo YL (2002) Antioxidant nutrients and lead toxicity. Toxicology 180:33–44. https://doi.org/10.1016/s0300-483x(02)00380-3

    CAS  Article  PubMed  Google Scholar 

  120. Carocci A, Rovito N, Sinicropi MS, Genchi G (2014) Mercury Toxicity and Neurodegenerative Effects. In: Whitacre DM (ed) Reviews of Environmental Contamination and Toxicology. Springer International Publishing, Cham, pp 1–18

    Google Scholar 

  121. Counter SA, Buchanan LH (2004) Mercury exposure in children: a review. Toxicol Appl Pharmacol 198:209–230. https://doi.org/10.1016/j.taap.2003.11.032

    CAS  Article  PubMed  Google Scholar 

  122. Weiss B, Clarkson TW, Simon W (2002) Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect 110:851–854. https://doi.org/10.1289/ehp.02110s5851

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Andreoli V, Sprovieri F (2017) Genetic aspects of susceptibility to mercury toxicity: an overview. IJERPH 14:93. https://doi.org/10.3390/ijerph14010093

    CAS  Article  PubMed Central  Google Scholar 

  124. Azeh Engwa G, Udoka Ferdinand P, Nweke Nwalo F, N. Unachukwu M (2019) Mechanism and health effects of heavy metal toxicity in humans. In: Karcioglu O, Arslan B (eds) Poisoning in the Modern World - New Tricks for an Old Dog? IntechOpen

  125. Gochfeld M (2003) Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ Saf 56:174–179. https://doi.org/10.1016/S0147-6513(03)00060-5

    CAS  Article  PubMed  Google Scholar 

  126. WHO (1991) Environmental Health Criteria 118. Inorganic Mercury. International Program on Chemical Safety. World Health Organization, Geneva

  127. Borak J, Hosgood HD (2007) Seafood arsenic: implications for human risk assessment. Regul Toxicol Pharmacol 47:204–212. https://doi.org/10.1016/j.yrtph.2006.09.005

    CAS  Article  PubMed  Google Scholar 

  128. Yu G, Sun D, Zheng Y (2007) Health effects of exposure to natural arsenic in groundwater and coal in China: an overview of occurrence. Environ Health Perspect 115:636–642. https://doi.org/10.1289/ehp.9268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. Feldmann J, Krupp EM (2011) Critical review or scientific opinion paper: arsenosugars—a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs? Anal Bioanal Chem 399:1735–1741. https://doi.org/10.1007/s00216-010-4303-6

    CAS  Article  PubMed  Google Scholar 

  130. Chen C-J, Wang S-L, Chiou J-M et al (2007) Arsenic and diabetes and hypertension in human populations: a review. Toxicol Appl Pharmacol 222:298–304. https://doi.org/10.1016/j.taap.2006.12.032

    CAS  Article  PubMed  Google Scholar 

  131. Meliker JR, Wahl RL, Cameron LL, Nriagu JO (2007) Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ Health 6:4. https://doi.org/10.1186/1476-069X-6-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Seilkop SK, Oller AR (2003) Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data. Regul Toxicol Pharmacol 37:173–190. https://doi.org/10.1016/S0273-2300(02)00029-6

    CAS  Article  PubMed  Google Scholar 

  133. Wall S (1980) Survival and Mortality Pattern Among Swedish Smelter Workers. Int J Epidemiol 9:73–87. https://doi.org/10.1093/ije/9.1.73

    CAS  Article  PubMed  Google Scholar 

  134. Welch K, Higgins I, Oh M, Burchfiel C (1982) Arsenic exposure, smoking, and respiratory cancer in copper smelter workers. Archives of Environmental Health: An International Journal 37:325–335. https://doi.org/10.1080/00039896.1982.10667586

    CAS  Article  Google Scholar 

  135. States JC, Srivastava S, Chen Y, Barchowsky A (2009) Arsenic and cardiovascular disease. Toxicol Sci 107:312–323. https://doi.org/10.1093/toxsci/kfn236

    CAS  Article  PubMed  Google Scholar 

  136. Liu SX, Athar M, Lippai I et al (2001) Induction of oxyradicals by arsenic: Implication for mechanism of genotoxicity. CELL BIOLOGY 98:1643–1648

    CAS  Google Scholar 

  137. McCarty KM, Chen Y-C, Quamruzzaman Q et al (2007) Arsenic Methylation, GSTT1, GSTM1, GSTP1 Polymorphisms, and Skin Lesions. Environ Health Perspect 115:341–345. https://doi.org/10.1289/ehp.9152

    CAS  Article  PubMed  Google Scholar 

  138. Thomas DJ (2007) Molecular processes in cellular arsenic metabolism. Toxicol Appl Pharmacol 222:365–373. https://doi.org/10.1016/j.taap.2007.02.007

    CAS  Article  PubMed  Google Scholar 

  139. Zhao F-J, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559. https://doi.org/10.1146/annurev-arplant-042809-112152

    CAS  Article  PubMed  Google Scholar 

  140. Ali N, Hoque A, Haque A, et al (2010) Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environmental Health 9

  141. Järup L, Berglund M, Elinder CG et al (1998) Health effects of cadmium exposure - a review of the literature and a risk estimate. Scand J Work Environ Health 24:1–51

    PubMed  Article  Google Scholar 

  142. Huff J, Lunn RM, Waalkes MP et al (2007) Cadmium-induced Cancers in Animals and in Humans. Int J Occup Environ Health 13:202–212. https://doi.org/10.1179/oeh.2007.13.2.202

    CAS  Article  PubMed  Google Scholar 

  143. Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117. https://doi.org/10.1016/S0300-483X(03)00305-6

    CAS  Article  PubMed  Google Scholar 

  144. Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293. https://doi.org/10.1016/j.taap.2009.03.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. Everett CJ, Frithsen IL (2008) Association of urinary cadmium and myocardial infarction. Environ Res 106:284–286. https://doi.org/10.1016/j.envres.2007.10.009

    CAS  Article  PubMed  Google Scholar 

  146. Menke A, Muntner P, Silbergeld EK et al (2009) Cadmium levels in urine and mortality among U.S. adults. Environ Health Perspect 117:190–196. https://doi.org/10.1289/ehp.11236

    CAS  Article  PubMed  Google Scholar 

  147. Adams SV, Newcomb PA, White E (2012) Dietary cadmium and risk of invasive postmenopausal breast cancer in the VITAL cohort. Cancer Causes Control 23:845–854. https://doi.org/10.1007/s10552-012-9953-6

    Article  PubMed  PubMed Central  Google Scholar 

  148. Ilyasova D, Schwartz G (2005) Cadmium and renal cancer. Toxicol Appl Pharmacol 207:179–186. https://doi.org/10.1016/j.taap.2004.12.005

    CAS  Article  Google Scholar 

  149. Julin B, Wolk A, Johansson J-E et al (2012) Dietary cadmium exposure and prostate cancer incidence: a population-based prospective cohort study. Br J Cancer 107:895–900. https://doi.org/10.1038/bjc.2012.311

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Watson WA, Litovitz TL, Rodgers GC et al (2005) 2004 Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 23:589–666. https://doi.org/10.1016/j.ajem.2005.05.001

    Article  PubMed  Google Scholar 

  151. El-Nekeety AA, El-Kady AA, Soliman MS et al (2009) Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food Chem Toxicol 47:2209–2215. https://doi.org/10.1016/j.fct.2009.06.019

    CAS  Article  PubMed  Google Scholar 

  152. Nuran Ercal BSP, Hande Gurer-Orhan BSP, Nukhet Aykin-Burns BSP (2001) Toxic Metals and Oxidative Stress Part I: Mechanisms Involved in Me-tal induced Oxidative Damage. CTMC 1:529–539. https://doi.org/10.2174/1568026013394831

    Article  Google Scholar 

  153. Tahir M, Iqbal M, Abbas M et al (2017) Comparative study of heavy metals distribution in soil, forage, blood and milk. Acta Ecol Sin 37:207–212. https://doi.org/10.1016/j.chnaes.2016.10.007

    Article  Google Scholar 

  154. Dongre NN, Suryakar AN, Patil AJ et al (2013) Biochemical effects of lead exposure on battery manufacture workers with reference to blood pressure, calcium metabolism and bone mineral density. Ind J Clin Biochem 28:65–70. https://doi.org/10.1007/s12291-012-0241-8

    CAS  Article  Google Scholar 

  155. Rodríguez J, Mandalunis PM (2018) A review of metal exposure and its effects on bone health. Journal of Toxicology 2018:1–11. https://doi.org/10.1155/2018/4854152

    CAS  Article  Google Scholar 

  156. Al-Saleh I, Al-Rouqi R, Elkhatib R et al (2017) Risk assessment of environmental exposure to heavy metals in mothers and their respective infants. Int J Hyg Environ Health 220:1252–1278. https://doi.org/10.1016/j.ijheh.2017.07.010

    CAS  Article  PubMed  Google Scholar 

  157. Lanphear BP, Hornung R, Ho M et al (2002) Environmental lead exposure during early childhood. J Pediatr 140:40–47. https://doi.org/10.1067/mpd.2002.120513

    CAS  Article  PubMed  Google Scholar 

  158. Devoto P, Flore G, Ibba A et al (2001) Lead intoxication during intrauterine life and lactation but not during adulthood reduces nucleus accumbens dopamine release as studied by brain microdialysis. Toxicol Lett 121:199–206. https://doi.org/10.1016/S0378-4274(01)00336-8

    CAS  Article  PubMed  Google Scholar 

  159. Kalita J, Kumar V, Misra UK, Bora HK (2017) Memory and learning dysfunction following copper toxicity: biochemical and immunohistochemical basis. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0619-y

    Article  PubMed  Google Scholar 

  160. Ahamed M, Mohd F, Kumar A et al (2008) Oxidative stress and neurological disorders in relation to blood lead levels in children. Redox Rep 13:117–122. https://doi.org/10.1179/135100008X259213

    CAS  Article  PubMed  Google Scholar 

  161. Landrigan PJ, Boffetta P, Apostoli P (2000) The reproductive toxicity and carcinogenicity of lead: A critical review 38:231–243

    CAS  Google Scholar 

  162. Gidlow DA (2015) Lead toxicity OCCMED 65:348–356. https://doi.org/10.1093/occmed/kqv018

    CAS  Article  Google Scholar 

  163. Niu Y, Yu W, Fang S et al (2015) Lead poisoning influences TCR-related gene expression patterns in peripheral blood T-lymphocytes of exposed workers. J Immunotoxicol 12:92–97. https://doi.org/10.3109/1547691X.2014.899412

    CAS  Article  PubMed  Google Scholar 

  164. Di Lorenzo L, Silvestroni A, Martino MG et al (2006) Evaluation of peripheral blood neutrophil leucocytes in lead-exposed workers. Int Arch Occup Environ Health 79:491–498. https://doi.org/10.1007/s00420-005-0073-4

    CAS  Article  PubMed  Google Scholar 

  165. Scortegagna M, Hanbauer I (1997) The effect of lead exposure and serum deprivation on mesencephalic primary cultures. Neurotoxicology 18:331–339

    CAS  PubMed  Google Scholar 

  166. Staff NRC, Methylmercury C, on the TE of, Staff B on ES and T, (2000) Toxicological Effects of Methylmercury. National Academies Press, Washington

    Google Scholar 

  167. U.S. EPA (1997) Mercury Study Report to Congress. Office of Air Quality Planning and Standards and Office of Research and Development

  168. Karri V, Schuhmacher M, Kumar V (2016) Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol 48:203–213. https://doi.org/10.1016/j.etap.2016.09.016

    CAS  Article  PubMed  Google Scholar 

  169. Rafati-Rahimzadeh M, Rafati-Rahimzadeh M, Kazemi S, Moghadamnia AA (2014) Current approaches of the management of mercury poisoning: need of the hour. DARU J Pharm Sci 22:46. https://doi.org/10.1186/2008-2231-22-46

    CAS  Article  Google Scholar 

  170. Risher JF, Murray HE, Prince GR (2002) Organic mercury compounds: human exposure and its relevance to public health. Toxicol Ind Health 18:109–160. https://doi.org/10.1191/0748233702th138oa

    CAS  Article  PubMed  Google Scholar 

  171. Boucher O, Muckle G, Jacobson JL et al (2014) Domain-specific effects of prenatal exposure to PCBs, mercury, and lead on infant cognition: results from the Environmental Contaminants and Child Development Study in Nunavik. Environ Health Perspect 122:310–316. https://doi.org/10.1289/ehp.1206323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  172. Golding J, Steer CD, Hibbeln JR et al (2013) Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ Health Perspect 121:1214–1218. https://doi.org/10.1289/ehp.1206115

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  173. Tan SW, Meiller JC, Mahaffey KR (2009) The endocrine effects of mercury in humans and wildlife. Crit Rev Toxicol 39:228–269. https://doi.org/10.1080/10408440802233259

    CAS  Article  PubMed  Google Scholar 

  174. Schulze-Osthoff K, Bakker AC, Vanhaesebroeck B et al (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J Biol Chem 267:5317–5323. https://doi.org/10.1016/S0021-9258(18)42768-8

    CAS  Article  PubMed  Google Scholar 

  175. Iavicoli I, Fontana L, Bergamaschi A (2009) The effects of metals as endocrine disruptors. Journal of Toxicology and Environmental Health, Part B 12:206–223. https://doi.org/10.1080/10937400902902062

    CAS  Article  Google Scholar 

  176. Goldman SM (2014) Environmental Toxins and Parkinson’s Disease. Annu Rev Pharmacol Toxicol 54:141–164. https://doi.org/10.1146/annurev-pharmtox-011613-135937

    CAS  Article  PubMed  Google Scholar 

  177. Intawongse M, Dean JR (2006) In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. TrAC, Trends Anal Chem 25:876–886. https://doi.org/10.1016/j.trac.2006.03.010

    CAS  Article  Google Scholar 

  178. Martínez LD, Gil RA, Pacheco PH, Cerutti S (2015) Elemental composition analysis of food by FAES and ICP-OES. In: de la Guardia M, Garrigues S (eds) Handbook of Mineral Elements in Food. John Wiley & Sons, Ltd, Chichester, UK, pp 219–238

  179. Vélez D, Devesa V, Súñer MA, Montoro R (2004) Metal contamination in food. In: Nollet LML (ed) Handbook of Food Analysis, 2nd edn. CRC Press, London, pp 1485–1512

    Google Scholar 

  180. Thomas R (2008) Practical guide to ICP-MS: a tutorial for beginners, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  181. D’Ilio S, Alessandrelli M, Cresti R et al (2002) Arsenic content of various types of rice as determined by plasma-based techniques. Microchem J 73:195–201. https://doi.org/10.1016/S0026-265X(02)00064-4

    Article  Google Scholar 

  182. Djingova R, Kuleff I (2000) Chapter 5 Instrumental techniques for trace analysis. In: Markert B, Friese K (eds) Trace Metals in the Environment. Elsevier, pp 137–185

    Google Scholar 

  183. Baker SA, Miller-Ihli NJ, Fodor P, Woller Á (2006) Atomic Spectroscopy in Food Analysis. In: Meyers RA (ed) Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd, Chichester, UK, p a1003

  184. Yeung V, Miller DD, Rutzke MA (2017) Atomic absorption spectroscopy, atomic emission spectroscopy, and inductively coupled plasma-mass spectrometry. In: Nielsen SS (ed) Food Analysis. Springer International Publishing, Cham, pp 129–150

    Chapter  Google Scholar 

  185. Miller DD, Rutzke MA (2010) Atomic absorption spectroscopy, atomic emission spectroscopy, and inductively coupled plasma-mass spectrometry. In: Nielsen SS (ed) Food Analysis. Springer, US, Boston, MA, pp 421–442

    Chapter  Google Scholar 

  186. Mohd Fairulnizal MN, Vimala B, Rathi DN, Mohd Naeem MN (2019) Atomic absorption spectroscopy for food quality evaluation. In: Zhong J, Wang X (eds) Evaluation Technologies for Food Quality. Woodhead Publishing, pp 145–173

    Google Scholar 

  187. Eurostat (2019) Agriculture, forestry and fishery statistics — 2019 edition. In: European Union. https://ec.europa.eu/eurostat/web/products-statistical-books/-/ks-fk-19-001. Accessed 11 Oct 2021

  188. Pérez-Lloréns JL, Acosta Y, Brun FG (2021) Seafood in Mediterranean countries: a culinary journey through history. International Journal of Gastronomy and Food Science 26:100437. https://doi.org/10.1016/j.ijgfs.2021.100437

    Article  Google Scholar 

  189. Sofi F, Macchi C, Abbate R et al (2014) Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr 17:2769–2782. https://doi.org/10.1017/S1368980013003169

    Article  PubMed  Google Scholar 

  190. Salas-Salvadó J, Bulló M, Estruch R et al (2014) Prevention of diabetes with mediterranean diets. Ann Intern Med 160:1–10. https://doi.org/10.7326/M13-1725

    Article  PubMed  Google Scholar 

  191. Martínez-González MÁ, de la Fuente-Arrillaga C, Nunez-Cordoba JM et al (2008) Adherence to Mediterranean diet and risk of developing diabetes: prospective cohort study. BMJ 336:1348–1351. https://doi.org/10.1136/bmj.39561.501007.BE

    Article  PubMed  PubMed Central  Google Scholar 

  192. Ahmed AB, Bouhadjera K (2010) Assessment of metals accumulated in Durum wheat (Triticum durum Desf.), pepper (Capsicum annuum) and agricultural soils. Afr J Agric Res 5:2795–2800

    Google Scholar 

  193. Christou A, Theologides CP, Costa C et al (2017) Assessment of toxic heavy metals concentrations in soils and wild and cultivated plant species in Limni abandoned copper mining site, Cyprus. J Geochem Explor 178:16–22. https://doi.org/10.1016/j.gexplo.2017.03.012

    CAS  Article  Google Scholar 

  194. Salama AK, Radwan MA (2005) Heavy metals (CD, PB) and trace elements (CU, ZN) contents in some foodstuffs from the Egyptian market. Emirates Journal of Food and Agriculture 34–42. https://doi.org/10.9755/ejfa.v12i1.5046

  195. Ghuniem MM, Khorshed MA, El-safty SM et al (2020) Assessment of human health risk due to potentially toxic elements intake via consumption of Egyptian rice-based and wheat-based baby cereals. Int J Environ Anal Chem 1–19.https://doi.org/10.1080/03067319.2020.1817911

  196. Pruvot C, Douay F, Hervé F, Waterlot C (2006) Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. J Soils Sediments 6:215–220. https://doi.org/10.1065/jss2006.10.186

    CAS  Article  Google Scholar 

  197. Gorecki S, Nesslany F, Hubé D et al (2017) Human health risks related to the consumption of foodstuffs of plant and animal origin produced on a site polluted by chemical munitions of the First World War. Sci Total Environ 599–600:314–323. https://doi.org/10.1016/j.scitotenv.2017.04.213

    CAS  Article  PubMed  Google Scholar 

  198. Douay F, Roussel H, Pruvot C, Waterlot C (2006) Impact of a smelter closedown on metal contents of wheat cultivated in the neighbourhood. Environ Sci Pollut Res 15:162. https://doi.org/10.1065/espr2006.12.366

    CAS  Article  Google Scholar 

  199. Douay F, Pelfrêne A, Planque J et al (2013) Assessment of potential health risk for inhabitants living near a former lead smelter. Part 1: metal concentrations in soils, agricultural crops, and homegrown vegetables. Environ Monit Assess 185:3665–3680. https://doi.org/10.1007/s10661-012-2818-3

    CAS  Article  PubMed  Google Scholar 

  200. Skendi A, Papageorgiou M, Irakli M, Katsantonis D (2020) Presence of mycotoxins, heavy metals and nitrate residues in organic commercial cereal-based foods sold in the Greek market. J Consum Prot Food Saf 15:109–119. https://doi.org/10.1007/s00003-019-01231-7

    CAS  Article  Google Scholar 

  201. Karavoltsos S, Sakellari A, Dimopoulos M et al (2002) Cadmium content in foodstuffs from the Greek market. Food Addit Contam 19:954–962. https://doi.org/10.1080/02652030210136973

    CAS  Article  PubMed  Google Scholar 

  202. Karavoltsos S, Sakellari A, Dassenakis M, Scoullos M (2008) Cadmium and lead in organically produced foodstuffs from the Greek market. Food Chem 106:843–851. https://doi.org/10.1016/j.foodchem.2007.06.044

    CAS  Article  Google Scholar 

  203. Wahsha M, Fontana S, Nadimi-Goki M, Bini C (2014) Potentially toxic elements in foodcrops (Triticum aestivum L., Zea mays L.) grown on contaminated soils. J Geochem Explor 147:189–199. https://doi.org/10.1016/j.gexplo.2014.07.009

    CAS  Article  Google Scholar 

  204. Pompa C, D’Amore T, Miedico O et al (2021) Evaluation and dietary exposure assessment of selected toxic trace elements in durum wheat (Triticum durum) imported into the Italian market: six years of official controls. Foods 10:775. https://doi.org/10.3390/foods10040775

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  205. Brizio P, Benedetto A, Squadrone S et al (2016) Heavy metals and essential elements in Italian cereals. Food Additives & Contaminants: Part B 9:261–267. https://doi.org/10.1080/19393210.2016.1209572

    CAS  Article  Google Scholar 

  206. Matos-Reyes MN, Cervera ML, Campos RC, de la Guardia M (2010) Total content of As, Sb, Se, Te and Bi in Spanish vegetables, cereals and pulses and estimation of the contribution of these foods to the Mediterranean daily intake of trace elements. Food Chem 122:188–194. https://doi.org/10.1016/j.foodchem.2010.02.052

    CAS  Article  Google Scholar 

  207. Hernández-Martínez R, Navarro-Blasco I (2012) Estimation of dietary intake and content of lead and cadmium in infant cereals marketed in Spain. Food Control 26:6–14. https://doi.org/10.1016/j.foodcont.2011.12.024

    CAS  Article  Google Scholar 

  208. Sofuoglu SC, Sofuoglu A (2018) An exposure-risk assessment for potentially toxic elements in rice and bulgur. Environ Geochem Health 40:987–998. https://doi.org/10.1007/s10653-017-9954-1

    CAS  Article  PubMed  Google Scholar 

  209. Ansel MA (2021) Hg, As, Cr, Sn, Ni, and Se concentrations in the muscle of little tunny (Euthynnus alletteratus) from the western Algerian stock. Biol Trace Elem Res 199:3898–3904. https://doi.org/10.1007/s12011-020-02514-z

    CAS  Article  PubMed  Google Scholar 

  210. Bachouche S, Houma F, Gomiero A, Rabah B (2017) Distribution and environmental risk assessment of heavy metal in surface sediments and red mullet (Mullus barbatus) from Algiers and BouIsmail Bay (Algeria). Environ Model Assess 22:473–490. https://doi.org/10.1007/s10666-017-9550-x

    Article  Google Scholar 

  211. Hamida S, Ouabdesslam L, Ladjel AF et al (2018) Determination of cadmium, copper, lead, and zinc in pilchard sardines from the bay of Boumerdés by atomic absorption spectrometry. Anal Lett 51:2501–2508. https://doi.org/10.1080/00032719.2018.1434537

    CAS  Article  Google Scholar 

  212. Lounas R, Kasmi H, Chernai S et al (2021) Heavy metal concentrations in wild and farmed gilthead sea bream from southern Mediterranean Sea—human health risk assessment. Environ Sci Pollut Res 28:30732–30742. https://doi.org/10.1007/s11356-021-12864-3

    CAS  Article  Google Scholar 

  213. Djedjibegovic J, Marjanovic A, Tahirovic D et al (2020) Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Sci Rep 10:13238. https://doi.org/10.1038/s41598-020-70205-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  214. Djedjibegovic J, Larssen T, Skrbo A et al (2012) Contents of cadmium, copper, mercury and lead in fish from the Neretva river (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS). Food Chem 131:469–476. https://doi.org/10.1016/j.foodchem.2011.09.009

    CAS  Article  Google Scholar 

  215. Alibabić V, Vahčić N, Bajramović M (2007) Bioaccumulation of metals in fish of salmonidae family and the impact on fish meat quality. Environ Monit Assess 131:349–364. https://doi.org/10.1007/s10661-006-9480-6

    CAS  Article  PubMed  Google Scholar 

  216. Alkas FB, Shaban JA, Sukuroglu AA et al (2017) Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake. Cyprus Environ Monit Assess 189:516. https://doi.org/10.1007/s10661-017-6222-x

    CAS  Article  PubMed  Google Scholar 

  217. Authman MMN, Abbas HH, Abbas WT (2013) Assessment of metal status in drainage canal water and their bioaccumulation in Oreochromis niloticus fish in relation to human health. Environ Monit Assess 185:891–907. https://doi.org/10.1007/s10661-012-2599-8

    CAS  Article  PubMed  Google Scholar 

  218. Sallam KI, Abd-Elghany SM, Mohammed MA (2019) Heavy metal residues in some fishes from Manzala Lake, Egypt, and their health-risk assessment. J Food Sci 84:1957–1965. https://doi.org/10.1111/1750-3841.14676

    CAS  Article  PubMed  Google Scholar 

  219. Marengo M, Durieux EDH, Ternengo S et al (2018) Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health. Ecotoxicol Environ Saf 158:204–212. https://doi.org/10.1016/j.ecoenv.2018.04.034

    CAS  Article  PubMed  Google Scholar 

  220. Gobert S, Pasqualini V, Dijoux J et al (2017) Trace element concentrations in the apex predator swordfish (Xiphias gladius) from a Mediterranean fishery and risk assessment for consumers. Mar Pollut Bull 120:364–369. https://doi.org/10.1016/j.marpolbul.2017.05.029

    CAS  Article  PubMed  Google Scholar 

  221. Fey P, Bustamante P, Bosserelle P et al (2019) Does trophic level drive organic and metallic contamination in coral reef organisms? Sci Total Environ 667:208–221. https://doi.org/10.1016/j.scitotenv.2019.02.311

    CAS  Article  PubMed  Google Scholar 

  222. Ferraris F, Iacoponi F, Raggi A et al (2021) Essential and toxic elements in sustainable and underutilized seafood species and derived semi-industrial ready-to-eat products. Food Chem Toxicol 154:112331. https://doi.org/10.1016/j.fct.2021.112331

    CAS  Article  PubMed  Google Scholar 

  223. Bouchoucha M, Chekri R, Leufroy A et al (2019) Trace element contamination in fish impacted by bauxite red mud disposal in the Cassidaigne canyon (NW French Mediterranean). Sci Total Environ 690:16–26. https://doi.org/10.1016/j.scitotenv.2019.06.474

    CAS  Article  PubMed  Google Scholar 

  224. Stamatis N, Kamidis N, Pigada P et al (2019) Bioaccumulation levels and potential health risks of mercury, cadmium, and lead in Albacore (Thunnus alalunga, Bonnaterre, 1788) from The Aegean Sea, Greece. Int J Environ Res Public Health 16:821. https://doi.org/10.3390/ijerph16050821

    CAS  Article  PubMed Central  Google Scholar 

  225. Sofoulaki K, Kalantzi I, Machias A et al (2019) Metals in sardine and anchovy from Greek coastal areas: Public health risk and nutritional benefits assessment. Food Chem Toxicol 123:113–124. https://doi.org/10.1016/j.fct.2018.10.053

    CAS  Article  PubMed  Google Scholar 

  226. Renieri EA, Safenkova IV, Alegakis AΚ et al (2019) Cadmium, lead and mercury in muscle tissue of gilthead seabream and seabass: risk evaluation for consumers. Food Chem Toxicol 124:439–449. https://doi.org/10.1016/j.fct.2018.12.020

    CAS  Article  PubMed  Google Scholar 

  227. Lomolino G, Crapisi A, Cagnin M (2016) Study of elements concentrations of European seabass (Dicentrarchus labrax) fillets after cooking on steel, cast iron, teflon, aluminum and ceramic pots. International Journal of Gastronomy and Food Science 5–6:1–9. https://doi.org/10.1016/j.ijgfs.2016.06.001

    Article  Google Scholar 

  228. Ramon D, Morick D, Croot P et al (2021) A survey of arsenic, mercury, cadmium, and lead residues in seafood (fish, crustaceans, and cephalopods) from the south-eastern Mediterranean Sea. J Food Sci 86:1153–1161. https://doi.org/10.1111/1750-3841.15627

    CAS  Article  PubMed  Google Scholar 

  229. Zaza S, de Balogh K, Palmery M et al (2015) Human exposure in Italy to lead, cadmium and mercury through fish and seafood product consumption from Eastern Central Atlantic Fishing Area. J Food Compos Anal 40:148–153. https://doi.org/10.1016/j.jfca.2015.01.007

    CAS  Article  Google Scholar 

  230. Storelli A, Barone G, Dambrosio A et al (2020) Occurrence of trace metals in fish from South Italy: assessment risk to consumer’s health. J Food Compos Anal 90:103487. https://doi.org/10.1016/j.jfca.2020.103487

    CAS  Article  Google Scholar 

  231. Squadrone S, Brizio P, Stella C et al (2016) Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy). Environ Pollut 215:77–83. https://doi.org/10.1016/j.envpol.2016.04.096

    CAS  Article  PubMed  Google Scholar 

  232. Reboa A, Mandich A, Cutroneo L et al (2019) Baseline evaluation of metal contamination in teleost fishes of the Gulf of Tigullio (north-western Italy): histopathology and chemical analysis. Mar Pollut Bull 141:16–23. https://doi.org/10.1016/j.marpolbul.2019.02.024

    CAS  Article  PubMed  Google Scholar 

  233. Obeid PJ, El-Khoury B, Burger J et al (2011) Determination and assessment of total mercury levels in local, frozen and canned fish in Lebanon. J Environ Sci 23:1564–1569. https://doi.org/10.1016/S1001-0742(10)60546-3

    CAS  Article  Google Scholar 

  234. Micheline G, Rachida C, Céline M et al (2019) Levels of Pb, Cd, Hg and As in fishery products from the Eastern Mediterranean and human health risk assessment due to their consumption. Int J Environ Res 13:443–455. https://doi.org/10.1007/s41742-019-00185-w

    CAS  Article  Google Scholar 

  235. Jisr N, Younes G, El Omari K et al (2020) Levels of heavy metals, total petroleum hydrocarbons, and microbial load in commercially valuable fish from the marine area of Tripoli. Lebanon Environ Monit Assess 192:705. https://doi.org/10.1007/s10661-020-08672-w

    CAS  Article  PubMed  Google Scholar 

  236. Okbah M, A. S. Dango E, M. El Zokm G (2018) Heavy metals in Fish Species from Mediterranean Coast, Tripoli Port (Libya): a comprehensive assessment of the potential adverse effects on human health. Egyptian Journal of Aquatic Biology and Fisheries 22:149–164. https://doi.org/10.21608/ejabf.2018.19514

  237. Al-Kazaghly RF, Hamid M, Ighwela KA (2021) Bioaccumulation of some Heavy Metals in Red mullet (Mullus barbatus) and Common pandora (Pagellus erythrinus) in Zliten Coast, Libya. Jurnal Ilmiah Perikanan dan Kelautan 13:91–96. https://doi.org/10.20473/jipk.v13i1.22037

  238. Bonsignore M, Salvagio Manta D, Al-Tayeb Sharif EA et al (2018) Marine pollution in the Libyan coastal area: environmental and risk assessment. Mar Pollut Bull 128:340–352. https://doi.org/10.1016/j.marpolbul.2018.01.043

    CAS  Article  PubMed  Google Scholar 

  239. Mahjoub M, Fadlaoui S, El Maadoudi M, Smiri Y (2021) Mercury, lead, and cadmium in the muscles of five fish species from the Mechraâ-Hammadi dam in Morocco and health risks for their consumers. Journal of Toxicology 2021:e8865869. https://doi.org/10.1155/2021/8865869

    CAS  Article  Google Scholar 

  240. Mahjoub M, El Maadoudi M, Smiri Y (2021) Trace metal concentrations in water and edible tissues of Liza ramada from the Northeastern Moroccan Mediterranean coast: Implications for health risk assessment. Regional Studies in Marine Science 46:101881. https://doi.org/10.1016/j.rsma.2021.101881

    Article  Google Scholar 

  241. Mahjoub M, El Maadoudi M, Smiri Y (2020) Metallic contamination of the muscles of three fish species from the Moulouya River (Lower Moulouya, Eastern Morocco). International Journal of Ecology 2020:e8824535. https://doi.org/10.1155/2020/8824535

    Article  Google Scholar 

  242. Afandi I, Talba S, Benhra A et al (2018) Trace metal distribution in pelagic fish species from the north-west African coast (Morocco). Int Aquat Res 10:191–205. https://doi.org/10.1007/s40071-018-0192-7

    Article  Google Scholar 

  243. Elnabris KJ, Muzyed SK, El-Ashgar NM (2013) Heavy metal concentrations in some commercially important fishes and their contribution to heavy metals exposure in Palestinian people of Gaza Strip (Palestine). Journal of the Association of Arab Universities for Basic and Applied Sciences 13:44–51. https://doi.org/10.1016/j.jaubas.2012.06.001

    Article  Google Scholar 

  244. Šinigoj-Gancnik K, Doganoc DZ (2000) Contamination of farm animals and fishes from slovenia with heavy metals and sulfonamides. Bull Environ Contam Toxicol 64:235–241. https://doi.org/10.1007/s001289910035

    Article  Google Scholar 

  245. Miklavčič A, Stibilj V, Heath E et al (2011) Mercury, selenium, PCBs and fatty acids in fresh and canned fish available on the Slovenian market. Food Chem 124:711–720. https://doi.org/10.1016/j.foodchem.2010.06.040

    CAS  Article  Google Scholar 

  246. Bajc Z, Jencic V, Sinigoj Gacnik K (2016) The heavy metal contents (Cd, Pb, Cu, Zn, Fe and Mn) and its relationships with the size of the rudd (Scardinius erythrophthalmus) from Lake Cerknica, Slovenia. Slov Vet Res 53:69–75

    Google Scholar 

  247. Al Sayegh Petkovšek S, Mazej Grudnik Z, Pokorny B (2012) Heavy metals and arsenic concentrations in ten fish species from the Šalek lakes (Slovenia): assessment of potential human health risk due to fish consumption. Environ Monit Assess 184:2647–2662. https://doi.org/10.1007/s10661-011-2141-4

    CAS  Article  PubMed  Google Scholar 

  248. Ramos-Miras JJ, Sanchez-Muros MJ, Morote E et al (2019) Potentially toxic elements in commonly consumed fish species from the western Mediterranean Sea (Almería Bay): Bioaccumulation in liver and muscle tissues in relation to biometric parameters. Sci Total Environ 671:280–287. https://doi.org/10.1016/j.scitotenv.2019.03.359

    CAS  Article  PubMed  Google Scholar 

  249. Lozano-Bilbao E, Domínguez D, González JA et al (2021) Risk assessment and study of trace/heavy metals in three species of fish of commercial interest on the island of El Hierro (Canary Islands, eastern-central Atlantic). J Food Compos Anal 99:103855. https://doi.org/10.1016/j.jfca.2021.103855

    CAS  Article  Google Scholar 

  250. Gutiérrez-Ravelo A, Gutiérrez ÁJ, Paz S et al (2020) Toxic metals (Al, Cd, Pb) and trace element (B, Ba Co, Cu, Cr, Fe, Li, Mn, Mo, Ni, Sr, V, Zn) levels in Sarpa Salpa from the North-Eastern Atlantic Ocean Region. IJERPH 17:7212. https://doi.org/10.3390/ijerph17197212

    CAS  Article  PubMed Central  Google Scholar 

  251. Fernández-Trujillo S, López-Perea JJ, Jiménez-Moreno M et al (2021) Metals and metalloids in freshwater fish from the floodplain of Tablas de Daimiel National Park. Spain Ecotoxicology and Environmental Safety 208:111602. https://doi.org/10.1016/j.ecoenv.2020.111602

    CAS  Article  PubMed  Google Scholar 

  252. Zrelli S, Amairia S, Chaabouni M et al (2021) Contamination of fishery products with mercury, cadmium, and lead in Tunisia: level’s estimation and human health risk assessment. Biol Trace Elem Res 199:721–731. https://doi.org/10.1007/s12011-020-02179-8

    Article  PubMed  Google Scholar 

  253. Zohra BS, Habib A (2016) Assessment of heavy metal contamination levels and toxicity in sediments and fishes from the Mediterranean Sea (southern coast of Sfax, Tunisia). Environ Sci Pollut Res 23:13954–13963. https://doi.org/10.1007/s11356-016-6534-3

    CAS  Article  Google Scholar 

  254. Khemis IB, Besbes Aridh N, Hamza N et al (2017) Heavy metals and minerals contents in pikeperch (Sander lucioperca), carp (Cyprinus carpio) and flathead grey mullet (Mugil cephalus) from Sidi Salem Reservoir (Tunisia): health risk assessment related to fish consumption. Environ Sci Pollut Res 24:19494–19507. https://doi.org/10.1007/s11356-017-9586-0

    CAS  Article  Google Scholar 

  255. Jebara A, Lo Turco V, Faggio C et al (2021) Monitoring of environmental Hg occurrence in Tunisian coastal areas. Int J Environ Res Public Health 18:5202. https://doi.org/10.3390/ijerph18105202

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  256. Varol M, Sünbül MR (2020) Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environ Res 184:109298. https://doi.org/10.1016/j.envres.2020.109298

    CAS  Article  PubMed  Google Scholar 

  257. Varol M, Sünbül MR (2018) Multiple approaches to assess human health risks from carcinogenic and non-carcinogenic metals via consumption of five fish species from a large reservoir in Turkey. Sci Total Environ 633:684–694. https://doi.org/10.1016/j.scitotenv.2018.03.218

    CAS  Article  PubMed  Google Scholar 

  258. Varol M, Sünbül MR (2017) Organochlorine pesticide, antibiotic and heavy metal residues in mussel, crayfish and fish species from a reservoir on the Euphrates River, Turkey. Environ Pollut 230:311–319. https://doi.org/10.1016/j.envpol.2017.06.066

    CAS  Article  PubMed  Google Scholar 

  259. Cherfi A, Achour M, Cherfi M et al (2015) Health risk assessment of heavy metals through consumption of vegetables irrigated with reclaimed urban wastewater in Algeria. Process Saf Environ Prot 98:245–252. https://doi.org/10.1016/j.psep.2015.08.004

    CAS  Article  Google Scholar 

  260. Cherfi A, Abdoun S, Gaci O (2014) Food survey: Levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food Chem Toxicol 70:48–53. https://doi.org/10.1016/j.fct.2014.04.044

    CAS  Article  PubMed  Google Scholar 

  261. Ćota J, Kurtović O, Sarić E, et al (2016) Effect of tomato fruit development stages on yield, fruit quality and heavy metal content. Acta Horticulturae 323–328. https://doi.org/10.17660/ActaHortic.2016.1142.49

  262. Murtic S, Zahirović Ć (2019) Heavy metals concentration in greenhouse soil used in intensive cucumber production (Cucumis sativus L.). Agric Conspec Sci 84:239–243

    Google Scholar 

  263. Murtic S, Sahinovic E, Civic H, Jurkovic J (2020) Health risk from heavy metals via consumption of food crops grown on the soils in the vicinity of manganese mine. Bulg J Agric Sci 26:452–456

    Google Scholar 

  264. Abi Njoh R, Kocadal K, Alkas F et al (2021) Heavy metal pollution of agricultural soils and vegetables of abandoned mining district in Northern Cyprus. Fresenius Environ Bull 30:1415–1423

    Google Scholar 

  265. Shehata HS, Galal TM (2020) Trace metal concentration in planted cucumber (Cucumis sativus L.) from contaminated soils and its associated health risks. J Consum Prot Food Saf 15:205–217. https://doi.org/10.1007/s00003-020-01284-z

    CAS  Article  Google Scholar 

  266. Osman HEM, Abdel-Hamed EMW, Al-Juhani WSM et al (2021) Bioaccumulation and human health risk assessment of heavy metals in food crops irrigated with freshwater and treated wastewater: a case study in Southern Cairo. Egypt Environ Sci Pollut Res 28:50217–50229. https://doi.org/10.1007/s11356-021-14249-y

    CAS  Article  Google Scholar 

  267. Eissa MA, Negim OE, Eissa MA, Negim OE (2018) Heavy metals uptake and translocation by lettuce and spinach grown on a metal-contaminated soil. J Soil Sci Plant Nutr 18:1097–1107. https://doi.org/10.4067/S0718-95162018005003101

    CAS  Article  Google Scholar 

  268. Kandil MA, Khorshed MA, Saleh IA, Eshmawy MR (2020) Investigation of heavy metals in fruits and vegetables and their potential risk for egyptian consumer health. Plant Archives 20:1453–1463

    Google Scholar 

  269. Mombo S, Foucault Y, Deola F et al (2016) Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soils Sediments 16:1214–1224. https://doi.org/10.1007/s11368-015-1069-7

    CAS  Article  Google Scholar 

  270. Pelfrêne A, Sahmer K, Waterlot C, Douay F (2019) From environmental data acquisition to assessment of gardeners’ exposure: feedback in an urban context highly contaminated with metals. Environ Sci Pollut Res 26:20107–20120. https://doi.org/10.1007/s11356-018-3468-y

    CAS  Article  Google Scholar 

  271. AUSTRUY A, Roulier M, Angeletti B, et al (2021) Concentrations and transportation of metal and organochlorine pollutants in vegetables and risk assessment of human exposure in rural, urban and industrial environments (Bouches-du-Rhône, France). Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-14604-z

  272. Noli F, Tsamos P (2016) Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Sci Total Environ 563–564:377–385. https://doi.org/10.1016/j.scitotenv.2016.04.098

    CAS  Article  PubMed  Google Scholar 

  273. Squadrone S, Brizio P, Stella C et al (2020) Distribution and bioaccumulation of trace elements and lanthanides in apples from Northwestern Italy. J Trace Elem Med Biol 62:126646. https://doi.org/10.1016/j.jtemb.2020.126646

    CAS  Article  PubMed  Google Scholar 

  274. Salvo A, La Torre GL, Mangano V et al (2018) Toxic inorganic pollutants in foods from agricultural producing areas of Southern Italy: level and risk assessment. Ecotoxicol Environ Saf 148:114–124. https://doi.org/10.1016/j.ecoenv.2017.10.015

    CAS  Article  PubMed  Google Scholar 

  275. Melai V, Giovannini A, Chiumiento F et al (2018) Occurrence of metals in vegetables and fruits from areas near landfill in Southern Italy and implications for human exposure. International Journal of Food Contamination 5:8. https://doi.org/10.1186/s40550-018-0070-5

    Article  Google Scholar 

  276. Ferri R, Hashim D, Smith DR et al (2015) Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure. Sci Total Environ 518–519:507–517. https://doi.org/10.1016/j.scitotenv.2015.02.072

    CAS  Article  PubMed  Google Scholar 

  277. Igwegbe A, o., Belhaj H m., Hassan T m., Gibali A s. (1992) Effect of a highway’s traffic on the level of lead and cadmium in fruits and vegetables grown along the roadsides. J Food Saf 13:7–18. https://doi.org/10.1111/j.1745-4565.1992.tb00090.x

    CAS  Article  Google Scholar 

  278. Laaouidi Y, Bahmed A, Naylo A et al (2020) Trace elements in soils and vegetables from market gardens of urban areas in marrakech city. Biol Trace Elem Res 195:301–316. https://doi.org/10.1007/s12011-019-01849-6

    CAS  Article  PubMed  Google Scholar 

  279. Kugonic N, Grcman H (1999) The Accumulation of cadmium, lead and zinc by different vegetables from Zasavje (Slovenia). Phyton - Annales Rei Botanicae 39:161–165

    CAS  Google Scholar 

  280. Falnoga I, Jereb V, Smrkolj P (2003) Hg and Se in foodstuffs grown near a Hg mining area. J Phys IV France 107:447–450. https://doi.org/10.1051/jp4:20030337

    CAS  Article  Google Scholar 

  281. Rodriguez-Iruretagoiena A, Trebolazabala J, Martinez-Arkarazo I et al (2015) Metals and metalloids in fruits of tomatoes (Solanum lycopersicum) and their cultivation soils in the Basque Country: concentrations and accumulation trends. Food Chem 173:1083–1089. https://doi.org/10.1016/j.foodchem.2014.10.133

    CAS  Article  PubMed  Google Scholar 

  282. Margenat A, Matamoros V, Díez S et al (2018) Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Sci Total Environ 637–638:1166–1174. https://doi.org/10.1016/j.scitotenv.2018.05.035

    CAS  Article  PubMed  Google Scholar 

  283. Luis-González G, Rubio C, Gutiérrez Á et al (2015) Essential and toxic metals in taros (Colocasia esculenta) cultivated in the Canary Islands (Spain): evaluation of content and estimate of daily intake. Environ Monit Assess 187:4138. https://doi.org/10.1007/s10661-014-4138-2

    CAS  Article  PubMed  Google Scholar 

  284. López R, Hallat J, Castro A et al (2019) Heavy metal pollution in soils and urban-grown organic vegetables in the province of Sevilla, Spain. Biol Agric Hortic 35:219–237. https://doi.org/10.1080/01448765.2019.1590234

    Article  Google Scholar 

  285. Hattab S, Bougattass I, Hassine R, Dridi-Al-Mohandes B (2019) Metals and micronutrients in some edible crops and their cultivation soils in eastern-central region of Tunisia: a comparison between organic and conventional farming. Food Chem 270:293–298. https://doi.org/10.1016/j.foodchem.2018.07.029

    CAS  Article  PubMed  Google Scholar 

  286. Pehluvan M, Turan M, Kaya T, şimşek U, (2015) Heavy metal and mineral levels of some fruit species grown at the roadside in the east part of Turkey. Fresenius Environ Bull 24:1302–1309

    CAS  Google Scholar 

  287. Kalkisim O, Ozdes D, Baltaci C, Duran C (2019) Assessment of heavy metal contents of mulberry samples (fruit, leaf, soil) grown in Gumushane Province. Erwerbs-obstbau 61:85–96. https://doi.org/10.1007/s10341-018-0398-2

    Article  Google Scholar 

  288. Leblebici Z, Kar M, Başaran L (2020) Assessment of the heavy metal accumulation of various green vegetables grown in Nevşehir and their risks human health. Environ Monit Assess 192:483. https://doi.org/10.1007/s10661-020-08459-z

    CAS  Article  PubMed  Google Scholar 

  289. Messaoudi M, Benarfa A, Ouakouak H, Begaa S (2021) Determination of some chemical elements of common spices used by algerians and possible health risk assessment. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02817-9

    Article  PubMed  Google Scholar 

  290. Messaoudi M, Begaa S (2019) Dietary intake and content of some micronutrients and toxic elements in two Algerian spices (Coriandrum sativum L. and Cuminum cyminum L.). Biol Trace Elem Res 188:508–513. https://doi.org/10.1007/s12011-018-1417-8

    CAS  Article  PubMed  Google Scholar 

  291. Huremovic J, Badema B, Šarac T et al (2014) Heavy metal contents in spices from markets in Sarajevo, Bosnia and Herzegovina. Kemija u industriji/Journal of Chemists and Chemical Engineers 63:77–81

    CAS  Google Scholar 

  292. Abou-Arab AAK, Abou Donia MA (2000) Heavy metals in Egyptian spices and medicinal plants and the effect of processing on their levels. J Agric Food Chem 48:2300–2304. https://doi.org/10.1021/jf990508p

    CAS  Article  PubMed  Google Scholar 

  293. Potortì AG, Bua GD, Lo Turco V et al (2020) Major, minor and trace element concentrations in spices and aromatic herbs from Sicily (Italy) and Mahdia (Tunisia) by ICP-MS and multivariate analysis. Food Chem 313:126094. https://doi.org/10.1016/j.foodchem.2019.126094

    CAS  Article  PubMed  Google Scholar 

  294. Gonzálvez A, Armenta S, De La Guardia M (2008) Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES). Food Additives and Contaminants: Part B 1:114–121. https://doi.org/10.1080/02652030802520845

    CAS  Article  Google Scholar 

  295. Özkutlu F, Kara SM, Şekeroğlu N (2007) Determination of mineral and trace elements in some spices cultivated in Turkey. Acta Hortic 321–328. https://doi.org/10.17660/ActaHortic.2007.756.34

  296. Kiliçel F, Karapinar HS (2018) Determination of trace element contents of some spice samples by using FAAS. Asian J Chem 30:1551–1558. https://doi.org/10.14233/ajchem.2018.21236

  297. Luka MF, Akun E (2019) Investigation of trace metals in different varieties of olive oils from northern Cyprus and their variation in accumulation using ICP-MS and multivariate techniques. Environ Earth Sci 78:578. https://doi.org/10.1007/s12665-019-8581-9

    CAS  Article  Google Scholar 

  298. Kabaran S, Güleç A, Besler TH (2020) Are there any potential health risk of heavy metals through dietary intake of olive oil that produced in Morphou, Cyprus. Progr Nutr 22:1–9. https://doi.org/10.23751/pn.v22i3.8098

  299. Angioni A, Cabitza M, Russo MT, Caboni P (2006) Influence of olive cultivars and period of harvest on the contents of Cu, Cd, Pb, and Zn in virgin olive oils. Food Chem 99:525–529. https://doi.org/10.1016/j.foodchem.2005.08.016

    CAS  Article  Google Scholar 

  300. Bakkali K, Martos NR, Souhail B, Ballesteros E (2012) Determination of heavy metal content in vegetables and oils from spain and Morocco by inductively coupled plasma mass spectrometry. Anal Lett 45:907–919. https://doi.org/10.1080/00032719.2012.655658

    CAS  Article  Google Scholar 

  301. Zaanouni N, Gharssallaoui M, Eloussaief M, Gabsi S (2018) Heavy metals transfer in the olive tree and assessment of food contamination risk. Environ Sci Pollut Res 25:18320–18331. https://doi.org/10.1007/s11356-018-1474-8

    CAS  Article  Google Scholar 

  302. Mendil D, Uluözlü ÖD, Tüzen M, Soylak M (2009) Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry. J Hazard Mater 165:724–728. https://doi.org/10.1016/j.jhazmat.2008.10.046

    CAS  Article  PubMed  Google Scholar 

  303. Vergine M, Aprile A, Sabella E et al (2017) Cadmium concentration in grains of durum wheat (Triticum turgidum L. subsp. durum). J Agric Food Chem 65:6240–6246. https://doi.org/10.1021/acs.jafc.7b01946

    CAS  Article  PubMed  Google Scholar 

  304. Domínguez-González MR, Barciela-Alonso MC, Calvo-Millán VG et al (2020) The bioavailability of arsenic species in rice. Anal Bioanal Chem 412:3253–3259. https://doi.org/10.1007/s00216-020-02589-6

    CAS  Article  PubMed  Google Scholar 

  305. Burló F, Ramírez-Gandolfo A, Signes-Pastor AJ et al (2012) Arsenic contents in Spanish infant rice, pureed infant foods, and rice. J Food Sci 77:T15–T19. https://doi.org/10.1111/j.1750-3841.2011.02502.x

    CAS  Article  PubMed  Google Scholar 

  306. de Paiva EL, Morgano MA, Arisseto-Bragotto AP (2019) Occurrence and determination of inorganic contaminants in baby food and infant formula. Curr Opin Food Sci 30:60–66. https://doi.org/10.1016/j.cofs.2019.05.006

    Article  Google Scholar 

  307. Storelli MM, Giacominelli-Stuffler R, Storelli A, Marcotrigiano GO (2005) Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean Sea: a comparative study. Mar Pollut Bull 50:1004–1007. https://doi.org/10.1016/j.marpolbul.2005.06.041

    CAS  Article  PubMed  Google Scholar 

  308. D’.Amico P, Nucera D, Guardone L, et al (2018) Seafood products notifications in the EU Rapid Alert System for Food and Feed (RASFF) database: data analysis during the period 2011–2015. Food Control 93:241–250. https://doi.org/10.1016/j.foodcont.2018.06.018

    Article  Google Scholar 

  309. EC (2006) Commission Regulation No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs

  310. Visciano P, Perugini M, Manera M et al (2014) Nutritional quality and safety related to trace element content in fish from Tyrrhenian Sea. Bull Environ Contam Toxicol 92:557–561. https://doi.org/10.1007/s00128-013-1175-4

    CAS  Article  PubMed  Google Scholar 

  311. Fattorini D, Notti A, Halt MN et al (2005) Levels and chemical speciation of arsenic in polychaetes: a review. Mar Ecol 26:255–264. https://doi.org/10.1111/j.1439-0485.2005.00057.x

    CAS  Article  Google Scholar 

  312. Ferrante M, Napoli S, Grasso A et al (2019) Systematic review of arsenic in fresh seafood from the Mediterranean Sea and European Atlantic coasts: a health risk assessment. Food Chem Toxicol 126:322–331. https://doi.org/10.1016/j.fct.2019.01.010

    CAS  Article  PubMed  Google Scholar 

  313. Garcia-Vazquez E, Geslin V, Turrero P et al (2021) Oceanic karma? Eco-ethical gaps in African EEE metal cycle may hit back through seafood contamination. Sci Total Environ 762:143098. https://doi.org/10.1016/j.scitotenv.2020.143098

    CAS  Article  PubMed  Google Scholar 

  314. Chen Y, Li T, Han X et al (2012) Cadmium accumulation in different pakchoi cultivars and screening for pollution-safe cultivars. J Zhejiang Univ Sci B 13:494–502. https://doi.org/10.1631/jzus.B1100356

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  315. Sridhara Chary N, Kamala CT, Samuel Suman Raj D (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 69:513–524. https://doi.org/10.1016/j.ecoenv.2007.04.013

    CAS  Article  PubMed  Google Scholar 

  316. Hajeb P, Shakibazadeh S, Sloth JJ (2016) Toxic elements. In: Selamat J, Iqbal SZ (eds) Food Safety. Springer International Publishing, Cham, pp 57–87

    Chapter  Google Scholar 

  317. Prasad MNV (2008) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, Hoboken, N.J.

    Book  Google Scholar 

  318. CODEX (1995) Codex general standard for contaminants and toxins in food and feed. CODEX STAN 193–1995. Joint FAO/WHO Food Standards Programme, Rome

  319. Commission Regulation (EU) 2021/1317 of 9 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of lead in certain foodstuffs (Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2021/1317/oj. Accessed 23 May 2022

  320. Commission Regulation (EU) 2021/1323 of 10 August 2021 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in certain foodstuffs (Text with EEA relevance). https://eur-lex.europa.eu/eli/reg/2021/1323/oj. Accessed 23 May 2022

  321. Commission Regulation (EU) 2022/617 of 12 April 2022 amending Regulation (EC) No 1881/2006 as regards maximum levels of mercury in fish and salt (Text with EEA relevance). http://data.europa.eu/eli/reg/2022/617/oj/eng. Accessed 23 May 2022

  322. Bulletin officiel (2016) Arrêté conjoint du ministre de l’agriculture et de la pêche maritime et du ministre de la santé n°1643–16 du 23 chaabane 1437 (30 mai 2016) fixant les limites maximales autorisées des contaminants dans les produits primaires et les produits alimentaires

  323. EOS (2010) Maximum levels for certain contaminants in foodstuff. (Egyptian Organization for Standards & Quality). ES: 7136/2010. Cairo, Egypt.

  324. Official Journal of people’s Democratic Republic of Algeria (2011) Inter-ministerial decree of 30 Moharram 1432 corresponding to 5 January 2011 setting thresholds for the presence of chemical, microbiological and toxicological contaminants in fishery and aquaculture products.

  325. EFSA (2009) Scientific opinion on arsenic in food. EFSA J 7:1351. https://doi.org/10.2903/j.efsa.2009.1351

    Article  Google Scholar 

  326. FAO/WHO (2009) Risk assessment and its role in risk analysis. In: Principles and Methods for the Risk Assessment of Chemicals in Food. WHO, Geneva

  327. ATSDR (2018) Toxic Substances Portal. Toxicological and health professionals. Minimal Risk Levels (MRLs). https://www.atsdr.cdc.gov/minimalrisklevels/index.html. Accessed 27 Jul 2021

  328. JECFA (2011) Evaluation of certain food additives and contaminants. Seventy-third report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, Geneva, Switzerland

  329. EFSA (2010) Scientific opinion on lead in food. EFS2 8:. https://doi.org/10.2903/j.efsa.2010.1570

  330. ATSDR (2021) Agency for Toxic Substances and Disease Registry. https://www.atsdr.cdc.gov/index.html. Accessed 27 Jul 2021

  331. EFSA (2012) Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFS2 10:. https://doi.org/10.2903/j.efsa.2012.2985

  332. EFSA (2020) EU Menu external scientific reports: EFSA Journal. https://efsa.onlinelibrary.wiley.com/doi/toc/https://doi.org/10.1002/(ISSN)1831-4732.scientificreports. Accessed 16 Aug 2021

  333. JECFA (2004) Evaluation of certain food additives and contaminants. sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives. WHO, Geneva

  334. WHO, FAO, (2009) Principles and Methods for the Risk Assessment of Chemicals in Food. WHO, Geneva

    Google Scholar 

  335. JECFA (2011) Evaluation of certain contaminants in food: seventy-second report of the Joint FAO/WHO Expert Committee on Food Additives. WHO, World Health Organization, Geneva

    Google Scholar 

  336. ATSDR (2007) Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry US Department of Health and Human Services

  337. EFSA (2011) Statement on tolerable weekly intake for cadmium. EFS2 9:. https://doi.org/10.2903/j.efsa.2011.1975

  338. ATSDR (2012) Toxicological profile for Cadmium. Agency for Toxic Substances and Disease Registry US Department of Health and Human Services

  339. Beccaloni E, Vanni F, Beccaloni M, Carere M (2013) Concentrations of arsenic, cadmium, lead and zinc in homegrown vegetables and fruits: estimated intake by population in an industrialized area of Sardinia, Italy. Microchem J 107:190–195. https://doi.org/10.1016/j.microc.2012.06.012

    CAS  Article  Google Scholar 

  340. Barone G, Storelli A, Garofalo R et al (2015) Assessment of mercury and cadmium via seafood consumption in Italy: estimated dietary intake (EWI) and target hazard quotient (THQ). Food Additives & Contaminants: Part A 32:1277–1286. https://doi.org/10.1080/19440049.2015.1055594

    CAS  Article  Google Scholar 

  341. Leblanc JC, Malmauret L, Guérin T et al (2000) Estimation of the dietary intake of pesticide residues, lead, cadmium, arsenic and radionuclides in France. Food Addit Contam 17:925–932. https://doi.org/10.1080/026520300750038108

    CAS  Article  PubMed  Google Scholar 

  342. Hassan A-RHA, Zeinhom MMA, Abdel-Wahab MA, Tolba MH (2016) Heavy metal dietary intake and potential health risks for university hostel students. Biol Trace Elem Res 170:65–74. https://doi.org/10.1007/s12011-015-0451-z

    CAS  Article  PubMed  Google Scholar 

  343. Nasreddine L, Parent-Massin D (2002) Food contamination by metals and pesticides in the European Union. Should we worry? Toxicol Lett 127:29–41. https://doi.org/10.1016/S0378-4274(01)00480-5

    CAS  Article  PubMed  Google Scholar 

  344. Leblanc J-C, Guérin T, Noël L et al (2005) Dietary exposure estimates of 18 elements from the 1st French Total Diet Study. Food Addit Contam 22:624–641. https://doi.org/10.1080/02652030500135367

    CAS  Article  PubMed  Google Scholar 

  345. Al-Chaarani N, El-Nakat JH, Obeid PJ, Aouad S (2009) Measurement of levels of heavy metal contamination in vegetables grown and sold in selected areas in Lebanon. Jordan J Chem 4:303–315

    CAS  Google Scholar 

  346. Perelló G, Martí-Cid R, Llobet JM, Domingo JL (2008) Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J Agric Food Chem 56:11262–11269. https://doi.org/10.1021/jf802411q

    CAS  Article  PubMed  Google Scholar 

  347. Adjei-Mensah R, Ofori H, Tortoe C et al (2021) Effect of home processing methods on the levels of heavy metal contaminants in four food crops grown in and around two mining towns in Ghana. Toxicol Rep 8:1830–1838. https://doi.org/10.1016/j.toxrep.2021.11.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  348. Sengupta MK, Hossain MA, Mukherjee A et al (2006) Arsenic burden of cooked rice: Traditional and modern methods. Food Chem Toxicol 44:1823–1829. https://doi.org/10.1016/j.fct.2006.06.003

    CAS  Article  PubMed  Google Scholar 

  349. Díaz OP, Leyton I, Muñoz O et al (2004) Contribution of water, bread, and vegetables (raw and cooked) to dietary intake of inorganic arsenic in a rural village of Northern Chile. J Agric Food Chem 52:1773–1779. https://doi.org/10.1021/jf035168t

    CAS  Article  PubMed  Google Scholar 

  350. Cubadda F, Raggi A, Zanasi F, Carcea M (2003) From durum wheat to pasta: effect of technological processing on the levels of arsenic, cadmium, lead and nickel–a pilot study. Food Addit Contam 20:353–360. https://doi.org/10.1080/0265203031000121996

    CAS  Article  PubMed  Google Scholar 

  351. Hajeb P, Sloth JJ, Shakibazadeh Sh et al (2014) Toxic elements in food: occurrence, binding, and reduction approaches: toxic elements in food…. Comprehensive Reviews in Food Science and Food Safety 13:457–472. https://doi.org/10.1111/1541-4337.12068

    CAS  Article  PubMed  Google Scholar 

  352. Hajeb P, Jinap S (2012) Reduction of mercury from mackerel fillet using combined solution of cysteine, EDTA, and sodium chloride. J Agric Food Chem 60:6069–6076. https://doi.org/10.1021/jf300582j

    CAS  Article  PubMed  Google Scholar 

  353. Kumar S, Prasad S, Yadav KK et al (2019) Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches - a review. Environ Res 179:108792. https://doi.org/10.1016/j.envres.2019.108792

    CAS  Article  PubMed  Google Scholar 

  354. Shah V, Daverey A (2020) Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov 18:100774. https://doi.org/10.1016/j.eti.2020.100774

    Article  Google Scholar 

  355. Tangahu BV, Sheikh Abdullah SR, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  356. Ali A, Mannan A, Hussain I et al (2018) Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: isotherm, kinetics and statistical supposition of process. Environmental Nanotechnology, Monitoring & Management 9:1–11. https://doi.org/10.1016/j.enmm.2017.11.003

    Article  Google Scholar 

  357. Srivastav A, Yadav KK, Yadav S et al (2018) Nano-phytoremediation of pollutants from contaminated soil environment: current scenario and future prospects. In: Ansari AA, Gill SS, Gill R et al (eds) Phytoremediation. Springer International Publishing, Cham, pp 383–401

    Chapter  Google Scholar 

  358. Massoud R, Hadiani MR, Hamzehlou P, Khosravi-Darani K (2019) Bioremediation of heavy metals in food industry: application of Saccharomyces cerevisiae. Electron J Biotechnol 37:56–60. https://doi.org/10.1016/j.ejbt.2018.11.003

    CAS  Article  Google Scholar 

  359. Shu G, Zheng Q, Chen L et al (2021) Screening and identification of Lactobacillus with potential cadmium removal and its application in fruit and vegetable juices. Food Control 126:108053. https://doi.org/10.1016/j.foodcont.2021.108053

    CAS  Article  Google Scholar 

  360. FDA (2021) Closer to Zero: Action Plan for Baby Foods. In: FDA. https://www.fda.gov/food/metals-and-your-food/closer-zero-action-plan-baby-foods. Accessed 11 Aug 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Zinedine.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Youssfi, M., Sifou, A., Ben Aakame, R. et al. Trace elements in Foodstuffs from the Mediterranean Basin—Occurrence, Risk Assessment, Regulations, and Prevention strategies: A review. Biol Trace Elem Res (2022). https://doi.org/10.1007/s12011-022-03334-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-022-03334-z

Keywords

  • Trace elements
  • Foodstuffs
  • Mediterranean basin
  • Risk assessment
  • Regulations
  • Prevention