Skip to main content
Log in

Influence of Garlic (Allium sativum) Clove-Based Selenium Nanoparticles on Status of Nutritional, Biochemical, Enzymological, and Gene Expressions in the Freshwater Prawn Macrobrachium rosenbergii (De Man, 1879)

  • Original Article
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Selenium (Se) is one of the essential micronutrients for performing vital body functions. This study aims at examining the influence of dietary supplementation of garlic clove-based green-synthesized selenium nanoparticles (GBGS-SeNPs, 48–87 nm) on carcass minerals and trace elements, and growth, biochemical, enzymological, and gene expression analyses in the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The 96 h LC50 of this GBGS-SeNPs to M. rosenbergii PL was 52.23 mg L−1. Five different artificial diets without supplementation of GBGS-SeNPs (control, 0.0 mg kg−1) and with supplementations of GBGS-SeNPs starting from 100 times lower than the LC50 value (0.5, 1.0, 1.5, and 2.0 mg kg−1) were prepared and fed to M. rosenbergii PL for 90 days. A dose-dependent accumulation of Se was observed in the carcass of experimental prawns. GBGS-SeNPs, up to 1.5 mg kg−1 significantly influenced the absorption of other trace elements (Ca, Cu, and Fe) and mineral salts (K, Mg, Na, and Zn). GBGS-SeNPs-supplemented diets showed efficient food conversion ratio (FCR) of 1.32 g against 2.71 g, and therefore enhanced the survival rate (85.6% against 78.8% in control) and weight gain (WG) of 1.41 g against 0.46 g of control prawn. GBGS-SeNPs significantly elevated the activities of protease, amylase, and lipase, and the contents of total protein, essential amino acids (EAA), total carbohydrate, total lipid, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), and ash. These indicate the growth promoting potential of GBGS-SeNPs in prawn. The insignificantly altered activities of glutamic oxaloacetate transaminase (GOT), glutamic pyruvate transaminase (GPT), superoxide dismutase (SOD), and catalase, and the content of malondialdehyde (MDA) up to 1.5 mg kg−1 suggest its acceptability in prawn. Moreover, a respective down- and upregulated myostatin (MSTN) and crustacean hyperglycemic hormone (CHH) genes confirmed the influence of GBGS-SeNPs on the growth of prawn. In contrast, 2.0 mg kg−1 GBGS-SeNPs supplementation starts to produce negative effects on prawn (FCR, 1.76 g; survival rate, 82.2%; WG, 0.84 g against respective values of 1.32 g, 85.6%; and 1.41 g observed in 1.5 mg kg−1 of GBGS-SeNPs-supplemented diet fed prawn). This study recommends a maximum of 1.5 mg kg−1 GBGS-SeNPs as dietary supplement to attain sustainable growth of M. rosenbergii. This was confirmed through polynomial and linear regression analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. FAO (2020) The state of world fisheries and aquaculture 2020. Sustainability in action. Rome 1–206. https://doi.org/10.4060/ca9229en

  2. New MB (2005) Freshwater prawn farming: Global status, recent research and a glance at the future. Aquac Res 36:210–230. https://doi.org/10.1111/j.1365-2109.2005.01237.x

    Article  Google Scholar 

  3. Nair CM, Salin KR (2012) Current status and prospects of farming the giant river prawn Macrobrachium rosenbergii (De Man) and the monsoon river prawn Macrobrachium malcolmsonii (Edwards HM) in India. Aquac Res 2:26–33. https://doi.org/10.1111/j.1365-2109.2011.03074.x

    Article  CAS  Google Scholar 

  4. Bhavan PS, Ruby SA, Poongodi R, Seenivasan C, Radhakrishnan S (2010) Efficacy of cereals and pulses as feeds for the post-larvae of the freshwater prawn Macrobrachium rosenbergii. J Ecobiotech 2(5):9–19

    Google Scholar 

  5. Khan KU, Zuberi A, Fernandes JBK, Ullah I, Sarwar H (2017) An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiol Biochem 43(6):1689–1705. https://doi.org/10.1007/s10695-017-0402-z

    Article  CAS  PubMed  Google Scholar 

  6. Harsij M, Gholipour Kanani H, Adineh H (2020) Effects of antioxidant supplementation (nano-selenium, vitamin C and E) on growth performance, blood biochemistry, immune status and body composition of rainbow trout (Oncorhynchus mykiss) under sub-lethal ammonia exposure. Aquacul 521:734–942. https://doi.org/10.1016/j.aquaculture.2020.734942

    Article  CAS  Google Scholar 

  7. Yu HJ, Liu JQ, Bock A, Li J, Luo GM, Shen JC (2005) Engineering glutathione transferase to a novel glutathione peroxidase mimic with high catalytic efficiency incorporation of selenocysteine into a glutathione-binding scaffold using an auxotrophic expression system. J Biol Chem 280(12):11930–11935. https://doi.org/10.1074/jbc.M408574200

    Article  CAS  PubMed  Google Scholar 

  8. Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017) Combined or individual effects of dietary vitamin E and selenium nanoparticles on humoral immune status and serum parameters of rainbow trout (Oncorhynchus mykiss) under high stocking density. Aquacul 474:40–47. https://doi.org/10.1016/j.aquaculture.2017.03.036

    Article  CAS  Google Scholar 

  9. Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V (2017) Selenium nanoparticles as a nutritional supplement. Nutrition 33:83–90. https://doi.org/10.1016/j.nut.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  10. Li GZ, Liu F, Xu C, Li JY, Xu YJ (2018) Selenium and zinc against Aβ25–35-induced cytotoxicity and tau phosphorylation in PC12 cells and inhibits γ-cleavage of APP. Biol Trace Elem Res 184:442–449. https://doi.org/10.1007/s12011-017-1162-4

    Article  CAS  PubMed  Google Scholar 

  11. Abd-Rabou AA, Shalby AB, Ahmed HH (2019) Selenium nanoparticles induce the chemo-sensitivity of fluorouracil nanoparticles in breast and colon cancer cells. Biol Trace Elem Res 187:80–91. https://doi.org/10.1007/s12011-018-1360-8

    Article  CAS  PubMed  Google Scholar 

  12. Kutuk SG, Naziroglu M (2020) Selenium diminishes docetaxel-induced cell death, oxidative stress, and inflammation in the laryngotracheal epithelium of the mouse. Biol Trace Elem Res 196:184–194. https://doi.org/10.1007/s12011-019-01914-0

    Article  CAS  PubMed  Google Scholar 

  13. Chen CJ, Xiao P, Chen Y, Fang R (2019) Selenium deficiency affects uterine smooth muscle contraction through regulation of the RhoA/ROCK signalling pathway in mice. Biol Trace Elem Res 192:277–286. https://doi.org/10.1007/s12011-019-01677-8

    Article  CAS  PubMed  Google Scholar 

  14. Qu KC, Li HQ, Tang KK, Wang ZY, Fan RF (2019) Selenium mitigates cadmium-induced adverse effects on trace elements and amino acids profiles in chicken pectoral muscles. Biol Trace Elem Res 193:234–240. https://doi.org/10.1007/s12011-019-01682-x

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Cui J, Lu Y, Huang C, Liu H, Xu S (2020) Selenium deficiency induces inflammation via the iNOS/NF-κB pathway in the brain of pigs. Biol Trace Elem Res 196:103–109. https://doi.org/10.1007/s12011-019-01908-y

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Lovell RT (1997) Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquacul 152:223–234. https://doi.org/10.1016/S0044-8486(96)01523-2

    Article  CAS  Google Scholar 

  17. Kohshahi AJ, Sourinejad I, Sarkheil M, Johari SA (2019) Dietary cosupplementation with curcumin and different selenium sources (nanoparticulate, organic, and inorganic selenium): influence on growth performance, body composition, immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 45(2):793–804. https://doi.org/10.1007/s10695-018-0585-y

    Article  CAS  PubMed  Google Scholar 

  18. Yuan L, Zhang R, Ma X, Yang L, Zheng Q, Chen D (2018) Selenium accumulation, antioxidant enzyme levels, and amino acids composition in Chinese mitten crab (Eriocheir sinensis) fed selenium-biofortified corn. Nutrients 10(3):318. https://doi.org/10.3390/nu10030318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schram E, Pedrero Z, Camara C, Van Der Heul JW, Luten JB (2008) Enrichment of African catfish with functional selenium originating from garlic. Aquac Res 39:850–860. https://doi.org/10.1111/j.1365-2109.2008.01938.x

    Article  CAS  Google Scholar 

  20. Saffari S, Keyvanshokooh S, Zakeri M, Johari SA, Pasha-Zanoosi H, Mozanzadeh MT (2018) Effects of dietary organic, inorganic, and nanoparticulate selenium sources on growth, hemato-immunological, and serum biochemical parameters of common carp (Cyprinus carpio). Fish Physiol Biochem 44(4):1087–1097. https://doi.org/10.1007/s10695-018-0496-y

    Article  CAS  PubMed  Google Scholar 

  21. Ghazi S, Diab AM, Khalafalla MM, Mohamed RA (2021) Synergistic effects of selenium and zinc oxide nanoparticles on growth performance, hemato-biochemical profile, immune and oxidative stress responses, and intestinal morphometry of Nile tilapia (Oreochromis niloticus). Biol Trace Elem Res 1–11. https://doi.org/10.1007/s12011-021-02631-3

  22. Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H (2015) Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquacult 446:25–29. https://doi.org/10.1016/j.aquaculture.2015.04.021

  23. Kumar N, Singh NP (2019) Effect of dietary selenium on immuno-biochemical plasticity and resistance against Aeromonas veronii biovar sobria in fish reared under multiple stressors. Fish Shellfish Immunol 84:38–47. https://doi.org/10.1016/j.fsi.2018.09.065

    Article  CAS  PubMed  Google Scholar 

  24. Neamat-Allah ANF, Mahmoud EA, Abd El Hakim Y (2019) Efficacy of dietary Nano-selenium on growth, immune response, antioxidant, transcriptomic profile and resistance of Nile tilapia, Oreochromis niloticus against Streptococcus iniae infection. Fish Shellfish Immunol 94:280–287. https://doi.org/10.1016/j.fsi.2019.09.019

    Article  CAS  PubMed  Google Scholar 

  25. Nugroho RA (2002) Fotedar R (2014) Comparing the effects of dietary selenium and mannan oligosaccharide supplementation on the growth, immune function, and antioxidant enzyme activity in the cultured marron Cherax cainii (Austin. Aquac Int 22(2):585–596. https://doi.org/10.1007/s10499-013-9682-1

    Article  CAS  Google Scholar 

  26. Tian WJ, Li EC, Chen LQ, Sun LM, Chen YL, Li M, Jiang X, Du ZY (2014) Growth, body composition and anti-oxidative status of juvenile Chinese mitten crabs, Eriocheir sinensis fed different dietary selenium levels. J Fishery Sci China 21(1):92–100

    CAS  Google Scholar 

  27. Chiu ST, Hsieh SL, Yeh SP, Jian SJ, Cheng W, Liu CH (2010) The increase of immunity and disease resistance of the giant freshwater prawn, Macrobrachium rosenbergii by feeding with selenium enriched-diet. Fish Shellfish Immunol 29:623–629. https://doi.org/10.1016/j.fsi.2010.06.012

    Article  CAS  PubMed  Google Scholar 

  28. Satgurunathan T, Bhavan PS, Komathi S (2017) Green synthesis of selenium nanoparticles from sodium selenite using garlic extract and its enrichment on Artemia nauplii to feed the freshwater prawn Macrobrachium rosenbergii post-larvae. Res J Chem Environ 21:1–12

  29. Kong Y, Ding Z, Zhang Y, Ye J, Du Z (2017) Dietary selenium requirement of juvenile oriental river prawn Macrobrachium nipponense. Aquacul 476:72–78. https://doi.org/10.1016/j.aquaculture.2017.04.010

    Article  CAS  Google Scholar 

  30. Yu Q, Fu Z, Huang M, Xu C, Wang X, Qin JG, Li E (2021) Growth, physiological, biochemical, and molecular responses of Pacific white shrimp Litopenaeus vannamei fed different levels of dietary selenium. Aquacul 535:736393. https://doi.org/10.1016/j.aquaculture.2021.736393

    Article  CAS  Google Scholar 

  31. Wang L, Li X, Lu K, Song K, Wang G, Zhang C (2021) Dietary hydroxyl methionine selenium supplementation enhances growth performance, antioxidant ability and nitrite tolerance of Litopenaeus vannamei. Aquacul 537:736513. https://doi.org/10.1016/j.aquaculture.2021.736513

    Article  CAS  Google Scholar 

  32. Li H, Zhang J, Wang T, Luo W, Zhou Q, Jiang G (2008) Elemental selenium particles at nano-size (Nano-Se) are more toxic to medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite. Aquat Toxicol 89:251–256. https://doi.org/10.1016/j.aquatox.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  33. Kapur M, Soni K, Kohli K (2017) Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity. Adv Tech Biol Med 1–7. https://doi.org/10.4172/2379-1764.1000198.05

  34. ASTM (2007) Standard guide for conducting acute toxicity tests on test materials with fishes, macro invertebrates, and amphibians. West Conshohocken, PA, United States. 0.1520/E0729-96

  35. Finney (1971) Probit analysis. Cambridge University Press, London

    Google Scholar 

  36. AOAC (2005) Determination of moisture, ash, protein and fat. Official method of analysis of the association of analytical chemists. 18th Edition, AOAC, Washington DC

  37. AOAC (2002) AOAC Official Method 999.11 Determination of Lead, Cadmium, Copper, Iron, and Zinc in foods. Off Methods Anal AOAC Int 11:1–3

    Google Scholar 

  38. Tekinay AA, Davies SJ (2001) Dietary carbohydrate level influencing feed intake, nutrient utilisation and plasma glucose concentration in the rainbow trout, Oncorhynchus mykiss. Turkish J Vet Anim Sci 25(5):657–666

    Google Scholar 

  39. Furne M, Hidalgo MC, Lopez A, Garcia-Gallego M, Morales AE, Domezain A, Domezaine J, Sanz A (2005) Digestive enzyme activities in Adriatic sturgeon, Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study Aquacul 250(1–2):391–398. https://doi.org/10.1016/j.aquaculture.2005.05.017

    Article  CAS  Google Scholar 

  40. Bernfeld P (1955) Amylases, α and β. Methods Enzymol 149–158. https://doi.org/10.1016/0076-6879(55)01021-5

  41. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193(1):265–275. https://doi.org/10.1016/0922-338X(96)89160-4

    Article  CAS  PubMed  Google Scholar 

  42. Moore S, Stein WH (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176:367–388

    Article  CAS  PubMed  Google Scholar 

  43. Roe JH (1955) The determination of sugar in blood and spinal fluid with anthrone reagent. J Biol Chem 212:335–343

    Article  CAS  PubMed  Google Scholar 

  44. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226(1):497–509. https://doi.org/10.3989/scimar.2005.69n187

    Article  CAS  PubMed  Google Scholar 

  45. Barnes H, Blackstock J (1973) Estimation of lipids in marine animals and tissues: detailed investigation of the sulphophosphovanilun method for “total” lipids. J Exp Mar Bio Ecol 12(1):103–118. https://doi.org/10.1016/0022-0981(73)90040-3

    Article  CAS  Google Scholar 

  46. Hess B, Sherma J (2004) Quantification of arginine in dietary supplement tablets and capsules by silica gel high-performance thin-layer chromatography with visible mode densitometry. Acta Chromatogr 60–69

  47. Nichols DS, Nichols PD, McMeekin TA (1993) Polyunsaturated fatty acids in Antarctic bacteria. Antarct Sci 5:149–160

    Article  Google Scholar 

  48. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56. https://doi.org/10.1093/ajcp/28.1.56

    Article  CAS  PubMed  Google Scholar 

  49. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3):469–474

    Article  CAS  PubMed  Google Scholar 

  50. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394. https://doi.org/10.1016/0003-2697(72)90132-7

    Article  CAS  PubMed  Google Scholar 

  51. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  PubMed  Google Scholar 

  52. Thanh NM, Barnes AC, Mather PB, Li Y, Lyons RE (2010) Single nucleotide polymorphisms in the actin and crustacean hyperglycemic hormone genes and their correlation with individual growth performance in giant freshwater prawn Macrobrachium rosenbergii. Aquacul 301:7–15. https://doi.org/10.1016/j.aquaculture.2010.02.001

    Article  CAS  Google Scholar 

  53. Sarasvathi E, Bhassu S, Maningas MB, Othman RY (2015) Myostatin: a potential growth-regulating gene in giant river prawn Macrobrachium rosenbergii. J World Aquac Soc 46(6):624–634. https://doi.org/10.1111/jwas.12238

    Article  CAS  Google Scholar 

  54. Onuegbu CU, Aggarwal A, Singh NB (2018) ZnO nanoparticles as feed supplement on growth performance of cultured African catfish fingerlings. J Sci Ind Res 77:213–218

    CAS  Google Scholar 

  55. El Basuini MF, El-Hais AM, Dawood MAO, Abou-Zeid AES, El-Damrawy SZ, Khalafalla MMES, Koshio S, Ishikawa M, Dossou S (2017) Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream Pagrus major. Aquac Nutr 23(6):1329–1340. https://doi.org/10.1111/anu.12508

    Article  CAS  Google Scholar 

  56. Kumar N, Krishnani KK, Singh NP (2018) Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res 25(9):8914–8927. https://doi.org/10.1007/s11356-017-1165-x

    Article  CAS  Google Scholar 

  57. Selmani A, Ulm L, Kasemets K, Kurvet I, Erceg I, Barbir R, Vrcek T (2020) Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings. Chemosphere 250:126–265. https://doi.org/10.1016/j.chemosphere.2020.126265

    Article  CAS  Google Scholar 

  58. Cardwell RD, Foreman DG, Payne TR, Wilbur DJ (1976) Acute toxicity of selenium dioxide to freshwater fishes. Arch Environ Contam Toxicol 4(1):129–144. https://doi.org/10.1007/BF02221018

    Article  CAS  PubMed  Google Scholar 

  59. Mal J, Veneman WJ, Nancharaiah YV, van Hullebusch ED, Peijnenburg WJGM, Vijver MG, Lens PNL (2017) A comparison of fate and toxicity of selenite, biogenically, and chemically synthesized selenium nanoparticles to zebrafish (Danio rerio) embryogenesis. Nanotoxicol 11(1):87–97. https://doi.org/10.1080/17435390.2016.1275866

    Article  CAS  Google Scholar 

  60. Wang H, Zhang J, Yu H (2007) Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice, Free Radic. Biol Med 42:1524–1533. https://doi.org/10.1016/j.freeradbiomed.2007.02.013

    Article  CAS  Google Scholar 

  61. Zhang J, Wang X, Xu TT (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: Comparison with se-methylselenocysteine in mice. Toxicol Sci 101(1):22–31. https://doi.org/10.1093/toxsci/kfm221

    Article  CAS  PubMed  Google Scholar 

  62. Wilder MN, Ikuta K, Atmomarsono M, Hatta T, Komuro K (1998) Changes in osmotic and ionic concentrations in the hemolymph of Macrobrachium rosenbergii exposed to varying salinities and correlation to ionic and crystalline composition of the cuticle. Comp Biochem Physiol - A Mol Integr Physiol 119(4):941–950. https://doi.org/10.1016/S1095-6433(98)00008-7

    Article  Google Scholar 

  63. Furriel RPM, McNamara JC, Leone FA (2000) Characterization of (Na+, K+)-ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii. Comp Biochem Physiol - B Biochem Mol Biol 126(3):303–315. https://doi.org/10.1016/S0305-0491(00)00184-X

    Article  CAS  PubMed  Google Scholar 

  64. Han D, Xie S, Liu M, Xiao X, Liu H, Zhu X, Yang Y (2011) The effects of dietary selenium on growth performances, Oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio). Aquac Nutr 17(3):741–749. https://doi.org/10.1111/j.1365-2095.2010.00841.x

    Article  Google Scholar 

  65. Le KT, Fotedar R (2014) Bioavailability of selenium from different dietary sources in yellowtail kingfish (Seriola lalandi). Aquacul 420:57–62. https://doi.org/10.1016/j.aquaculture.2013.10.034

    Article  CAS  Google Scholar 

  66. Wang X, Shen Z, Wang C, Li E, Qin JG, Chen L (2019) Dietary supplementation of selenium yeast enhances the antioxidant capacity and immune response of juvenile Eriocheir sinensis under nitrite stress. Fish Shellfish Immunol 87:22–31. https://doi.org/10.1016/j.fsi.2018.12.076

    Article  CAS  PubMed  Google Scholar 

  67. Liu GX, Jiang GZ, Lu KL, Li XF, Zhou M, Zhang DD, Liu WB (2017) Effects of dietary selenium on the growth, selenium status, antioxidant activities, muscle composition and meat quality of blunt snout bream Megalobrama amblycephala. Aquac Nutr 23(4):777–787. https://doi.org/10.1111/anu.12444

    Article  CAS  Google Scholar 

  68. Lovett DL, Felder DL (1990) Ontogenetic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Biol Bull 178(2):144–159. https://doi.org/10.2307/1541973

    Article  CAS  PubMed  Google Scholar 

  69. Nugroho RA (2002) Fotedar R (2015) Effects of dietary organic selenium on immune responses, total selenium accumulation and digestive system health of marron, Cherax cainii (Austin. Aquac Res 46(7):1657–1667. https://doi.org/10.1111/are.12320

    Article  CAS  Google Scholar 

  70. Dawood MAO, Koshio S, Zaineldin AI, Van Doan H, Moustafa EM, Abdel-Daim MM, Angeles Esteban M, Hassaan MS (2019) Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol Biochem 45(1):219–230. https://doi.org/10.1007/s10695-018-0556-3

    Article  CAS  PubMed  Google Scholar 

  71. Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Manickam N, Srinivasan V (2014) Dietary supplementation of zinc nanoparticles and its influence on biology, physiology and immune responses of the freshwater prawn Macrobrachium rosenbergii. Biol Trace Elem Res 160(1):56–66. https://doi.org/10.1007/s12011-014-0026-4

    Article  CAS  PubMed  Google Scholar 

  72. Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Srinivasan V, Santhanam P (2015) Effects of dietary zinc on the growth, digestive enzyme activities, muscle biochemical compositions, and antioxidant status of the giant freshwater prawn Macrobrachium rosenbergii. Aquacul 448:98–104. https://doi.org/10.1016/j.aquaculture.2015.05.045

    Article  CAS  Google Scholar 

  73. Muralisankar T, Bhavan PS, Radhakrishnan S, Seenivasan C, Srinivasan V (2016) The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J Trace Elem Med Biol 34:39–49. https://doi.org/10.1016/j.jtemb.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  74. Srinivasan V, Bhavan PS, Rajkumar G, Satgurunathan T, Muralisankar T, Bhavan S (2016) Effects of dietary iron oxide nanoparticles on the growth performance, biochemical constituents and physiological stress responses of the giant freshwater prawn Macrobrachium rosenbergii post-larvae. Int J Fish Aquat Stud 4:170–182

    Google Scholar 

  75. Srinivasan V, Bhavan PS, Rajkumar G, Satgurunathan T, Muralisankar T (2017) Dietary supplementation of magnesium oxide (MgO) nanoparticles for better survival and growth of the freshwater prawn Macrobrachium rosenbergii Post-larvae. Biol Trace Elem Res 177(1):196–208. https://doi.org/10.1007/s12011-016-0855-4

    Article  CAS  PubMed  Google Scholar 

  76. Asaikkutti A, Bhavan PS, Vimala K, Karthik M, Cheruparambath P (2016) Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. J Trace Elem Med Biol 35:7–17. https://doi.org/10.1016/j.jtemb.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  77. Nandeesha MC, Gangadhar B, Keshavanath P, Varghese TJ (2000) Effect of dietary sodium chloride supplementation on growth, biochemical composition and digestive enzyme activity of young Cyprinus carpio (Linn.) and Cirrhinus mrigala (Ham.). J Aquacult Trop 15(2):135–144

  78. Wang FB, Luo L, Lin SM, Li Y, Chen S, Wang YG, Wen H, Hu CJ (2011) Dietary magnesium requirements of juvenile grass carp, ctenopharyngodon idella. Aquac Nutr 17(3):691–700. https://doi.org/10.1111/j.1365-2095.2010.00829.x

    Article  Google Scholar 

  79. Shao XP, Liu W, Bin LuK, Le Xu WN, Zhang WW, Wang Y, Zhu J (2012) Effects of tribasic copper chloride on growth, copper status, antioxidant activities, immune responses and intestinal microflora of blunt snout bream (Megalobrama amblycephala) fed practical diets. Aquacul 338:154–159. https://doi.org/10.1016/j.aquaculture.2012.01.018

    Article  CAS  Google Scholar 

  80. Cotter PA, Craig SR, Mclean E (2008) Hyperaccumulation of selenium in hybrid striped bass: a functional food for aquaculture? Aquac Nutr 14(3):215–222. https://doi.org/10.1111/j.1365-2095.2007.00520.x

    Article  CAS  Google Scholar 

  81. Satgurunathan T, Bhavan PS, Joy RDS (2019) Green synthesis of chromium nanoparticles and their effects on the growth of the prawn Macrobrachium rosenbergii Post-larvae. Biol Trace Elem Res 187(2):543–552. https://doi.org/10.1007/s12011-018-1407-x

    Article  CAS  PubMed  Google Scholar 

  82. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  CAS  PubMed  Google Scholar 

  83. Kong Y, Li S, Liu M, Yao C, Yang X, Zhao N, Li M (2019) Effect of dietary organic selenium on survival, growth, antioxidation, immunity and gene expressions of selenoproteins in abalone Haliotis discus hannai. Aquac Res 50(3):847–855. https://doi.org/10.1111/are.13956

    Article  CAS  Google Scholar 

  84. Abdel-Aziem SH, Mahrous KF, Abd El-Hafez MAM, Abdel Mordy M (2018) Genetic variability of myostatin and prolactin genes in popular goat breeds in Egypt J Genet Eng. Biotechnol 16(1):89–97. https://doi.org/10.1016/j.jgeb.2017.10.005

    Article  Google Scholar 

  85. Matsakas A, Patel K (2009) Intracellular signalling pathways regulating the adaptation of skeletal muscle to exercise and nutritional changes. Histol Histopathol 24:209–222. https://doi.org/10.14670/HH-24.209

  86. Segev-Hadar A, Alupo G, Tal K, Nitzan T, Biran J (2020) Identification and characterization of a non-muscular myostatin in the Nile tilapia. Front Endocrinol (Lausanne) 11:94. https://doi.org/10.3389/fendo.2020.00094

    Article  PubMed  Google Scholar 

  87. Qian Z, Mi X, Wang X, He S, Liu Y, Hou F, Liu X (2013) cDNA cloning and expression analysis of myostatin/GDF11 in shrimp, Litopenaeus vannamei. Comp Biochem Physiol A: Mol Integr Physiol 165(1):30–39. https://doi.org/10.1016/j.cbpa.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  88. Yan Y, Lu X, Kong J, Meng X, Luan S, Dai P, Luo K (2020) Molecular characterization of myostatin and its inhibitory function on myogenesis and muscle growth in Chinese shrimp, Fenneropenaeus chinensis. Gene 758:144–986. https://doi.org/10.1016/j.gene.2020.144986

    Article  CAS  Google Scholar 

  89. McDonald AA, Chang ES, Mykles DL (2011) Cloning of a nitric oxide syntheses from green shore crab, Carcinus maenas: a comparative study of the effects of eyestalk ablation on expression in the molting glands (Y-organs) of C. maenas and blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol A 158(1):150–162. https://doi.org/10.1016/j.cbpa.2010.10.013

    Article  CAS  Google Scholar 

  90. Diarte-Plata G, Sainz-Hernandez JC, Aguinaga-Cruz JA, Fierro-Coronado JA, Polanco-Torres A, Puente-Palazuelos C (2012) Eyestalk ablation procedures to minimize pain in the freshwater prawn Macrobrachium americanum. Appl Anim Behav Sci 140:172–178. https://doi.org/10.1016/j.applanim.2012.06.002

    Article  Google Scholar 

  91. Pamuru RR, Rosen O, Manor R, Chung JS, Zmora N, Glazera L (2012) Stimulation of molt by RNA interference of the molt inhibiting hormone in the crayfish Cherax quadricarinatus. Gen Comp Endocrinol 178(2):227–236. https://doi.org/10.1016/j.ygcen.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  92. Jung H, Lyons RE, Hurwood DA, Mather PB (2013) Genes and growth performance in crustacean species: a review of relevant genomic studies in crustaceans and other taxa. Rev Aquac 5(2):77–110. https://doi.org/10.1111/raq.12005

    Article  Google Scholar 

  93. Qiao H, Jiang F, Xiong Y, Jiang S, Fu H, Li F, Wu Y (2018) Characterization, expression patterns of molt-inhibiting hormone gene of Macrobrachium nipponense and its roles in molting and growth. PLoS ONE 13(6):e0198861. https://doi.org/10.1371/journal.pone.0198861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu Y, Peng G, Sun M, Li J, Yan W, Tang J, Xu Z (2019) Genomic organization of the molt-inhibiting hormone gene in the red swamp crayfish Procambarus clarkii and characterization of single-nucleotide polymorphisms associated with growth. Comp Biochem Physiol B: Biochem Mole Biol 237:110–334. https://doi.org/10.1016/j.cbpb.2019.110334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. R. Sathiskumar, and one of his Research Scholars, M. Saravanan, Plant Biotechnology Laboratory, Bharathiar University, Coimbatore, India for extending RT-PCR facility and data analysis.

Author information

Authors and Affiliations

Authors

Contributions

Thangavelu Satgurunathan has conducted the experiment and drafted the manuscript. Saravana Bhavan Periyakali has designed, supervised, and scrutinized the entire work. Ramasamy Kalpana has validated the references and constructed the tables, figures, and graphical abstract. Sheu Joen-Rong and Jayakumar Thanasekaran have evaluated the manuscript. Manubolu Manjunath has checked the manuscript overall.

Corresponding author

Correspondence to Periyakali Saravana Bhavan.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 933 KB)

Supplementary file2 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satgurunathan, T., Bhavan, P.S., Kalpana, R. et al. Influence of Garlic (Allium sativum) Clove-Based Selenium Nanoparticles on Status of Nutritional, Biochemical, Enzymological, and Gene Expressions in the Freshwater Prawn Macrobrachium rosenbergii (De Man, 1879). Biol Trace Elem Res 201, 2036–2057 (2023). https://doi.org/10.1007/s12011-022-03300-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03300-9

Keywords

Navigation