Skip to main content
Log in

Iron Deficiency Increases Phosphorylation of SP1 to Upregulate SPNS2 Expression in Hepatocellular Carcinoma

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The sphingosine-1-phosphate (S1P) transporter spinster homolog 2 (SPNS2) promotes tumor progression by modulating tumor immunity and enhancing tumor cells migration and invasion. Previously we found that iron deficiency in hepatocellular carcinoma upregulated SPNS2 expression to increase tumor metastasis. The present study aimed to identify the underlying mechanism of SPNS2 upregulation. Since the mRNA of SPNS2 was significantly increased, we used a transcription factor activity microarray to find the transcription factor responsible for this. The results showed that iron deprivation in hepatoma cells increased the transcriptional activities of 14 transcription factors while only 2 were decreased. Among these, 3 transcription factors, HIF1α, SP1, and YY1, were predicted to bind with the transcription promoter region of SPNS2. But only HIF1α and SP1 transcriptional activities on SPNS2 were increased by iron deficiency, and the increase of SP1 transcriptional activity was stronger than HIF1α. The protein level of HIF1α was increased by iron deficiency, while SP1 was not changed at the protein level but the phosphorylation level was increased. The inhibitor of HIF1α, PX478, and the inhibitor of SP1, Mithramycin A, reversed the increased mRNA and protein expressions of SPNS2 by iron deficiency, with a more significant effect by Mithramycin A. These results provided a comprehensive view of changes in transcriptional activities by iron deficiency and identified that SP1 was the main regulator of iron deficiency-inducing SPNS2 expression in hepatoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Mendoza A et al (2017) Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 546:158–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spiegel S, Maczis MA, Maceyka M, Milstien S (2019) New insights into functions of the sphingosine-1-phosphate transporter SPNS2. J Lipid Res 60:484–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van der Weyden L et al (2017) Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541:233–236

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lv L, Yi Q, Yan Y, Chao F, Li M (2021) SPNS2 downregulation induces EMT and promotes colorectal cancer metastasis via activating AKT signaling pathway. Front Oncol 11:682773

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gu X et al (2019) SPNS2 promotes the malignancy of colorectal cancer cells via regulating Akt and ERK pathway. Clin Exp Pharmacol Physiol 46:861–871

    Article  CAS  PubMed  Google Scholar 

  6. Li M, et al. (2021) Sphingosine-1-phosphate transporter spinster homolog 2 is essential for iron-regulated metastasis of hepatocellular carcinoma. Mol Ther

  7. Villa-Roel N et al (2022) Hypoxia inducible factor 1alpha inhibitor PX-478 reduces atherosclerosis in mice. Atherosclerosis 344:20–30

    Article  CAS  PubMed  Google Scholar 

  8. Luo F et al (2022) HIF-1alpha inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non-small cell lung cancer. Cancer Lett 531:39–56

    Article  CAS  PubMed  Google Scholar 

  9. Koh MY et al (2008) Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1alpha. Mol Cancer Ther 7:90–100

    Article  CAS  PubMed  Google Scholar 

  10. Han DS, Lee EO (2022) Sp1 plays a key role in vasculogenic mimicry of human prostate cancer cells. Int J Mol Sci 23

  11. Gong J, Ji Y, Liu X, Zheng Y, Zhen Y (2022) Mithramycin suppresses tumor growth by regulating CD47 and PD-L1 expression. Biochem Pharmacol 197:114894

    Article  CAS  PubMed  Google Scholar 

  12. Choi ES, Nam JS, Jung JY, Cho NP, Cho SD (2014) Modulation of specificity protein 1 by mithramycin A as a novel therapeutic strategy for cervical cancer. Sci Rep 4:7162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keith B, Johnson RS, Simon MC (2011) HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 12:9–22

    Article  PubMed  PubMed Central  Google Scholar 

  14. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    Article  CAS  PubMed  Google Scholar 

  15. Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634

    Article  CAS  PubMed  Google Scholar 

  16. Yang MH et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10:295–305

    Article  CAS  PubMed  Google Scholar 

  17. Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T (2007) Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res 67:4157–4163

    Article  CAS  PubMed  Google Scholar 

  18. Wong CC et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci U S A 108:16369–16374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang H et al (2012) HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 31:1757–1770

    Article  CAS  PubMed  Google Scholar 

  20. Liao D, Corle C, Seagroves TN, Johnson RS (2007) Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res 67:563–572

    Article  CAS  PubMed  Google Scholar 

  21. Hanna SC et al (2013) HIF1alpha and HIF2alpha independently activate SRC to promote melanoma metastases. J Clin Invest 123:2078–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science 352:175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vizcaino C, Mansilla S, Portugal J (2015) Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther 152:111–124

    Article  CAS  PubMed  Google Scholar 

  24. Collins JF, Hu Z (2007) Promoter analysis of intestinal genes induced during iron-deprivation reveals enrichment of conserved SP1-like binding sites. BMC Genomics 8:420

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen SJ et al (2016) Desferal regulates hCtr1 and transferrin receptor expression through Sp1 and exhibits synergistic cytotoxicity with platinum drugs in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo. Oncotarget 7:49310–49321

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kweon MH, Afaq F, Bhat KM, Setaluri V, Mukhtar H (2007) A novel antioxidant 3-O-Caffeoyl-1-methylquinic acid enhances ultraviolet A-mediated apoptosis in immortalized HaCaT keratinocytes via Sp1-dependent transcriptional activation of p21(WAF1/Cip1). Oncogene 26:3559–3571

    Article  CAS  PubMed  Google Scholar 

  27. Moussa RS, Kovacevic Z, Bae DH, Lane DJR, Richardson DR (2018) Transcriptional regulation of the cyclin-dependent kinase inhibitor, p21(CIP1/WAF1), by the chelator, Dp44mT. Biochim Biophys Acta 1862:761–774

    Article  CAS  Google Scholar 

  28. Bao WD et al (2016) Iron overload in hereditary tyrosinemia type 1 induces liver injury through the Sp1/Tfr2/hepcidin axis. J Hepatol 65:137–145

    Article  CAS  PubMed  Google Scholar 

  29. Tang Y et al (2020) Mild iron overload induces TRIP12-mediated degradation of YY1 to trigger hepatic inflammation. Free Radic Biol Med 161:187–197

    Article  CAS  PubMed  Google Scholar 

  30. Tang Y et al (2021) Rapid responses of adipocytes to iron overload increase serum TG level by decreasing adiponectin. J Cell Physiol 236:7544–7553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Natural Science Foundation (19ZR1469700, to Yuxiao Tang), the National Natural Science Foundation of China (81903306, to Yuxiao Tang; 82003711, to Dongyao Wang), and the Shanghai Sailing Program (19YF1459400, to Dongyao Wang).

Author information

Authors and Affiliations

Authors

Contributions

Dr. D.W and Dr. Y.T performed the experiments and drafted the manuscript. Dr. M.L and Dr. H.S interpreted the experimental data and provided critical revisions of the manuscript. Mr. J.Y and Mr. Z.G provided technical and material supports. Dr. Y.T proposed and designed this study.

Corresponding author

Correspondence to Yuxiao Tang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Li, M., Shen, H. et al. Iron Deficiency Increases Phosphorylation of SP1 to Upregulate SPNS2 Expression in Hepatocellular Carcinoma. Biol Trace Elem Res 201, 1689–1694 (2023). https://doi.org/10.1007/s12011-022-03296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03296-2

Keywords

Navigation