Skip to main content

Advertisement

Log in

Selenium Alleviates Ammonia-Induced Splenic Cell Apoptosis and Inflammation by Regulating the Interleukin Family/Death Receptor Axis and Nrf2 Signaling Pathway

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Ammonia (NH3) is a harmful gas in livestock houses. So far, many researchers have demonstrated that NH3 is detrimental to animal and human organs. Selenium (Se) is one of the essential trace elements in the body and has a good antioxidant effect. However, there was little conclusive evidence that Se alleviated NH3 poisoning. To investigate the toxic mechanism of NH3 on pig spleen and the antagonistic effect of L-selenomethionine, a porcine NH3-poisoning model and an L-selenomethionine intervention model were established in this study. Our results showed that NH3 exposure increased the apoptosis rate, while L-selenomethionine supplementation alleviated the process of excessive apoptosis. Immunofluorescence staining, real-time quantitative polymerase chain reaction (qRT-PCR), and western blot results confirmed that exposure to NH3 changed the expression levels of interleukin family factors, apoptosis, death receptor, and oxidative stress factors. Our study further confirmed that excessive NH3 induced inflammatory response and mediated necroptosis leading to cell apoptosis by activating the Nrf2 signaling pathway. Excessive NH3 could mediate spleen injury through oxidative stress-induced mitochondrial dynamics disorder. L-Selenomethionine could alleviate inflammation and abnormal apoptosis by inhibiting the IL-17/TNF-α/FADD axis. Our study would pave the way for comparative medicine and environmental toxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All original data (including the raw sequencing files) used in the current manuscript could be available to access from the corresponding author (jbao@neau.edu.cn). You can find supplementary files related to this article online.

References

  1. Li Y, Zhang R, Li X, Li J, Ji W, Zeng X, Bao J 2020. Exposure to the environmental pollutant ammonia causes changes in gut microbiota and inflammatory markers in fattening pigs. Ecotox. Environ.Safe. https://doi.org/10.1016/j.ecoenv.2020.111564

  2. Carlile F (1984) Ammonia in poultry houses: a literature review. Worlds Poult Sci J 40:99–113. https://doi.org/10.1079/WPS19840008

    Article  Google Scholar 

  3. Philippe F, Cabaraux J, Nicks B 2011. Ammonia emissions from pig houses: influencing factors and mitigation techniques [J]. Agriculture Ecosystems & Environment, 2011, 141(3–4): 245–60. https://doi.org/10.1016/j.agee.2011.03.012

  4. Bauer S, Tsigaridis K, Miller R (2016) Significant atmospheric aerosol pollution caused by world food cultivation. Geophys Res Lett 43:5394–5400. https://doi.org/10.1002/2016GL068354

    Article  Google Scholar 

  5. Tao Z, Xu W, Zhu C, Zhang S, Shi Z, Song W, Liu H, Li H (2019) Effects of ammonia on intestinal microflora and productive performance of laying ducks. Poult Sci 98:1947–1959. https://doi.org/10.3382/ps/pey578

    Article  CAS  PubMed  Google Scholar 

  6. Rangroo V, Thrane A, Wang F, Cotrina M, Smith N, Chen M, Xu Q, Kang N, Fujita T, Nagelhus E, Nedergaard M (2013) Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med 19:1643–1648. https://doi.org/10.1038/nm.3400

    Article  CAS  Google Scholar 

  7. Whitaker C, Paigen B, Beamer W, Bronson R, Churchill G, Schweitzer I, Myers D (2001) The impact of reduced frequency of cage changes on the health of mice housed in ventilated cages. Lab Anim 35:58–73. https://doi.org/10.1258/0023677011911381

    Article  Google Scholar 

  8. Xing H, Peng M, Li Z, Chen J, Zhang H, Teng X (2019) Ammonia inhalation mediated mir-202-5p leads to cardiac autophagy through PTEN/AKT/mTOR pathway. Chemosphere 235:858–866. https://doi.org/10.1016/j.chemosphere.2019.06.235

    Article  CAS  PubMed  Google Scholar 

  9. Morisse J, Morisse 1979 Action of an irritant (NH3) on the pathogeny of a respiratory disease induced experimentally by Pasteurella multocida in the rabbit. Annales de zootechnie, INRA/EDP Sciences, 1979, 28 (1), pp.139–139. Hal-00887861

  10. Soudani N, Sefi M, Ben Amara I, Boudawara T, Zeghal N (2010) Protective effects of selenium (Se) on chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol Environ Saf 73:671–678. https://doi.org/10.1016/j.ecoenv.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Liu Y, Tian L, Yang H, Liang G, Xu D (2012) Effects of dietary mannan oligosaccharide on growth performance, gut morphology and stress tolerance of juvenile Pacific white shrimp. Litopenaeus vannamei Fish Shellfish Immunol 33:1027–1032. https://doi.org/10.1016/j.fsi.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  12. Gao J, Zhu Y, Guo Z, Xu G, Xu P 2020. Transcriptomic analysis reveals different responses to ammonia stress and subsequent recovery between Coilia nasus larvae and juveniles. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 230, 108710. https://doi.org/10.1016/j.cbpc.2020.108710

  13. Mellert’, W., Deckardt, K., Gembardt, C., Zwirner-Baier, I., Jickh, R., van Ravenzwaay, B., (2004) Aniline: early indicators of toxicity in male rats and their relevance to spleen carcinogenicity. Hum Exp Toxicol 23:379–389. https://doi.org/10.1191/0960327104ht466oa

    Article  Google Scholar 

  14. Xie W, Lv A, Li R, Tang Z, Ma D, Huang X, Zhang R, Ge M (2018) Agaricus blazei Murill polysaccharides protect against cadmium-induced oxidative stress and inflammatory damage in chicken spleens. Biol Trace Elem Res 184:247–258. https://doi.org/10.1007/s12011-017-1189-6

    Article  CAS  PubMed  Google Scholar 

  15. Guo Y, Zhao P, Guo G, Hu Z, Tian L, Zhang K, Sun Y, Zhang X, Zhang W, Xing M (2016) Effects of arsenic trioxide exposure on heat shock protein response in the immune organs of chickens. Biol Trace Elem Res 169:134–141. https://doi.org/10.1007/s12011-015-0389-1

    Article  CAS  PubMed  Google Scholar 

  16. Li J, Li S, Tang Z S, Xu W 2010. Oxidative stress-mediated cytotoxicity of cadmium in chicken splenic lymphocytes. 196(Supp-S). https://doi:https://doi.org/10.1016/j.toxlet.2010.03.429

  17. An Y, Xing H, Zhang Y, Jia P, Gu X, Teng X (2019) The evaluation of potential immunotoxicity induced by environmental pollutant ammonia in broilers. Poult Sci 98:3165–3175. https://doi.org/10.3382/ps/pez135

    Article  CAS  PubMed  Google Scholar 

  18. Halliwell B (1999) Antioxidant defense mechanisms: from the beginning to the end (of the beginning). Free Radic Res 31:261–272. https://doi.org/10.1080/10715769900300841

    Article  CAS  PubMed  Google Scholar 

  19. G Farrugia R Balzan 2012 Oxidative stress and programmed cell death in yeast Front Oncol 2https://doi.org/10.3389/fonc.2012.00064

  20. Liang Z, Liu R, Zhao D, Wang L, Sun M, Wang M, Song L (2016) Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol 54:523–528. https://doi.org/10.1016/j.fsi.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Wang A, Wang X, Zeng X, Xing H (2022) AMPK/PPAR-γ/NF-κB axis participates in ROS-mediated apoptosis and autophagy caused by cadmium in pig liver. Environ Pollut 294:118659. https://doi.org/10.1016/j.envpol.2021.118659

    Article  CAS  PubMed  Google Scholar 

  22. Cabiscol E, Piulats E, Echave P, Herrero E (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275:27393–27398. https://doi.org/10.1074/jbc.m003140200

    Article  CAS  PubMed  Google Scholar 

  23. Del Rio D, Stewart A, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328. https://doi.org/10.1016/j.numecd.2005.05.003

    Article  PubMed  Google Scholar 

  24. Avery S (2011) Molecular targets of oxidative stress. Biochem J 434:201–210. https://doi.org/10.1042/BJ20101695

    Article  CAS  PubMed  Google Scholar 

  25. Jeon B, Kim K, Chang S, Kim H (2002) Phosphoinositide 3-OH kinase/protein kinase B inhibits apoptotic cell death induced by reactive oxygen species in Saccharomyces cerevisiae. J Biochem (Tokyo) 131:693–699. https://doi.org/10.1093/oxfordjournals.jbchem.a003153

    Article  CAS  PubMed  Google Scholar 

  26. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. X Jin Z Xu X Zhao M Chen S Xu 2017 The antagonistic effect of selenium on lead-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney Chemospherehttps://doi.org/10.1016/j.chemosphere.2017.03.130

  28. Seo Y, Shin J, Ko K, Cha J, Park J, Lee B, Yun C, Kim Y, Seol D, Kim D, Yin X, Kim T (2003) The molecular mechanism of noxa-induced mitochondrial dysfunction in p53-mediated cell death. J Biol Chem 278:48292–48299. https://doi.org/10.1074/jbc.M308785200

    Article  CAS  PubMed  Google Scholar 

  29. Bellosillo B, Villamor N, López-Guillermo A, Marcé S, Bosch F, Campo E, Montserrat E, Colomer D (2002) Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia. Blood 100:1810–1816. https://doi.org/10.1182/blood-2001-12-0327

    Article  CAS  PubMed  Google Scholar 

  30. Chen Q, Gong B, Almasan A (2000) Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ 7:227–233. https://doi.org/10.1038/sj.cdd.4400629

    Article  CAS  PubMed  Google Scholar 

  31. Li Y, Zhou F, Huang J, Yang L, Jiang S, Yang Q, He J, Jiang S (2018) Transcriptome reveals involvement of immune defense, oxidative imbalance, and apoptosis in ammonia-stress response of the black tiger shrimp (Penaeus monodon). Fish Shellfish Immunol 83:162–170. https://doi.org/10.1016/j.fsi.2018.09.026

    Article  CAS  PubMed  Google Scholar 

  32. Li, X., Xing, M., Chen, M., Zhao, J., Fan, R., Zhao, X., Cao, C., Jie Yang, Zhang, Z., Xu, S.,2017. Effects of selenium-lead interaction on the gene expression of inflammatory factors and selenoproteins in chicken neutrophils. Ecotox Environ Safe.139, 447–453. https:// doi.org/https://doi.org/10.1016/j.ecoenv.2017.02.017

  33. Han Q, Liu H, Zhang R, Yang X, Bao J, Xing H (2021) Selenomethionine protects against ammonia-induced apoptosis through inhibition of endoplasmic reticulum stress in pig kidneys. Ecotoxicol Environ Saf 223:112596. https://doi.org/10.1016/j.ecoenv.2021.112596

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Pan L, Zeng X, Zhang R, Li X, Li J, Xing H, Bao J (2021) Ammonia exposure causes the imbalance of the gut-brain axis by altering gene networks associated with oxidative metabolism, inflammation and apoptosis. Ecotoxicol Environ Saf 224:112668. https://doi.org/10.1016/j.ecoenv.2021.112668

    Article  CAS  PubMed  Google Scholar 

  35. H Wang Q Han Y Chen G Hu H Xing 2021 Novel insights into cytochrome P450 enzyme and solute carrier families in cadmium-induced liver injury of pigs Ecotoxicol Environ Saf 211https://doi.org/10.1016/j.ecoenv.2021.111910

  36. Wang H, Zhang Y, Han Q, Xu Y, Hu G, Xing H (2020) The inflammatory injury of heart caused by ammonia is realized by oxidative stress and abnormal energy metabolism activating inflammatory pathway. Sci Total Environ 742:140532. https://doi.org/10.1016/j.scitotenv.2020.140532

    Article  CAS  PubMed  Google Scholar 

  37. Wang S, Li X, Zhang M, Jiang H, Wang R, Qian Y, Li M (2021) Ammonia stress disrupts intestinal microbial community and amino acid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). Ecotoxicol Environ Saf 227:112932. https://doi.org/10.1016/j.ecoenv.2021.112932

    Article  CAS  PubMed  Google Scholar 

  38. Cheng Z, Shu Y, Li X, Li Y, Liu H 2022. Evaluation of potential cardiotoxicity of ammonia: L-selenomethionine plays a protective role by inhibiting autophagy mediated by PI3K-Akt-mTOR pathway [J]. Ecotoxicology and Environmental Safety, 2022, 233 (113304). https://doi.org/10.1016/j.ecoenv.2022.113304

  39. Kim J, Kang Y, Kim K, Kim S, Kim J (2019) Toxic effects of nitrogenous compounds (ammonia, nitrite, and nitrate) on acute toxicity and antioxidant responses of juvenile olive flounder, Paralichthys olivaceus. Environ Toxicol Pharmacol 67:73–78. https://doi.org/10.1016/j.etap.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  40. Kır M, Sunar MC, Gök MG (2019) Acute ammonia toxicity and the interactive effects of ammonia and salinity on the standard metabolism of European sea bass (Dicentrarchus labrax). Aquaculture 511:734273. https://doi.org/10.1016/j.aquaculture.2019.734273

    Article  CAS  Google Scholar 

  41. Mihina Š, Sauter M, Palkovičová Z, Karandušovská I, Brouček J (2012) Concentration of harmful gases in poultry and pig houses. Anim Sci Pap Rep 30:395–406

    CAS  Google Scholar 

  42. Duan Y, Xiong D, Wang Y, Li H, Dong H, Zhang J (2021) Toxic effects of ammonia and thermal stress on the intestinal microbiota and transcriptomic and metabolomic responses of Litopenaeus vannamei. Sci Total Environ 754:141867. https://doi.org/10.1016/j.scitotenv.2020.141867

    Article  CAS  PubMed  Google Scholar 

  43. Wang H, Zeng X, Zhang X, Liu H, Xing H (2021) Ammonia exposure induces oxidative stress and inflammation by destroying the microtubule structures and the balance of solute carriers in the trachea of pigs. Ecotoxicol Environ Saf 212:111974. https://doi.org/10.1016/j.ecoenv.2021.111974

    Article  CAS  PubMed  Google Scholar 

  44. Shi Q, Jin X, Fan R, Xing M, Guo J, Zhang Z, Zhang J, Xu S (2019) Cadmium-mediated miR-30a-GRP78 leads to JNK-dependent autophagy in chicken kidney. Chemosphere 215:710–715. https://doi.org/10.1016/j.chemosphere.2018.10.019

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Li C, Tang X, Lu Q, Sa R, Zhang H (2015) High concentrations of atmospheric ammonia induce alterations in the hepatic proteome of broilers (Gallus gallus): an iTRAQ-based quantitative proteomic analysis. PLoS ONE 10:e0123596. https://doi.org/10.1371/journal.pone.0123596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao Y, Lv G, Wang Y, Fan Z, Bi Y, Zhao L, Guo Z 2013. Mitochondrial fusion and fission after spinal sacord injury in rats[J]. Brain Research,2013,15–22. https://doi:https://doi.org/10.1016/j.brainres.2013.05.033.

  47. Liu L, Gong L, Zhang Y, Li N 2013. Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus. Exp Ther Med 5: 338–342, 2. https://doi.org/10.3892/etm.2012.787

  48. Duan Y, Yao X, Zhu J, Li Y, Zhang J, Zhou X, Qiao Y, Yang M, Li X 2017. Effects of yak‑activated protein on hematopoiesis and related cytokines in radiation‑induced injury in mice. Exp. Ther. Med. https://doi.org/10.3892/etm.2017.5256

  49. Hu X, Chi Q, Wang D, Chi X, Teng X, Li S (2018) Hydrogen sulfide inhalation-induced immune damage is involved in oxidative stress, inflammation, apoptosis and the Th1/Th2 imbalance in broiler bursa of Fabricius. Ecotoxicol Environ Saf 164:201–209. https://doi.org/10.1016/j.ecoenv.2018.08.029

    Article  CAS  PubMed  Google Scholar 

  50. Marquez R, Xu L (2015) Bcl-2: Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2:214–221

    Google Scholar 

  51. Wang Y, Zhao H, Shao Y, Liu J, Li J, Luo L, Xing M (2018) Copper (II) and/or arsenite-induced oxidative stress cascades apoptosis and autophagy in the skeletal muscles of chicken. Chemosphere 206:597–605. https://doi.org/10.1016/j.chemosphere.2018.05.013

    Article  CAS  PubMed  Google Scholar 

  52. Zhang H, Ji W, Li X, Feng Y, Wang J, Liu H, Bao J (2021) Immunosuppression, oxidative stress, and apoptosis in pig kidney caused by ammonia: application of transcriptome analysis in risk assessment of ammonia exposure. Toxicol Appl Pharmacol 428:115–675. https://doi.org/10.1016/j.taap.2021.115675

    Article  CAS  Google Scholar 

  53. Hot A, Miossec P (2011) Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann Rheum Dis 70:727–732. https://doi.org/10.1136/ard.2010.143768

    Article  CAS  PubMed  Google Scholar 

  54. Patel N, Chatterjee P, Di Paola R, Mazzon E, Britti D, De Sarro A, Cuzzocrea S, Thiemermann C (2005) Endogenous Interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion. J Pharmacol Exp Ther 312:1170–1178. https://doi.org/10.1124/jpet.104.078659

    Article  CAS  PubMed  Google Scholar 

  55. Kan X, Liu B, Guo W, Wei L, Lin Y, Guo Y, Gong Q, Li Y, Xu D, Cao Y, Huang B, Dong A, Ma H, Fu S, Liu J (2019) Myricetin relieves LPS-induced mastitis by inhibiting inflammatory response and repairing the blood–milk barrier. J Cell Physiol 234:16252–16262. https://doi.org/10.1002/jcp.28288

    Article  CAS  PubMed  Google Scholar 

  56. Lv L, Zhang H, Liu Z, Lei L, Feng Z, Zhang D, Ren Y, Zhao S (2020) Comparative study of yeast selenium vs. sodium selenite on growth performance, nutrient digestibility, anti-inflammatory and anti-oxidative activity in weaned piglets challenged by Salmonella typhimurium. Innate Immun 26:248–258. https://doi.org/10.1177/1753425919888566

    Article  CAS  PubMed  Google Scholar 

  57. L Liu C Wu D Chen B Yu Z Huang Y Luo P Zheng X Mao J Yu J Luo H Yan J He 2020 Selenium-enriched yeast alleviates oxidative stress-induced intestinal mucosa disruption in weaned pigs Oxid Med Cell Longev 1–11https://doi.org/10.1155/2020/5490743

Download references

Acknowledgements

Thanks are given to the Animal Welfare Team of Northeast Agricultural University for supporting this study. All authors thank Lian Chuan-Biotechnology Co., Ltd. (Hangzhou, China) for their help in transcriptome sequencing.

Funding

This study was supported by the China Agriculture Research System of MOF and MARA (Project No. CARS-35-05B).

Author information

Authors and Affiliations

Authors

Contributions

Jun Bao, Honggui Liu, and Jing Wang: conceived and designed the current experiments plans. Jing Wang: wrote the manuscript and completed the experiments. Yutao Li: analyzed these data. Jianxing Wang and Yulai Wang: provided help during animal breeding. Jun Bao and Honggui Liu: revised the whole manuscript.

Corresponding author

Correspondence to Jun Bao.

Ethics declarations

Ethics Approval

The Animal Ethics Committee approved all procedures in this experiment of Northeast Agricultural University (No. SRM-06).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, Y., Wang, J. et al. Selenium Alleviates Ammonia-Induced Splenic Cell Apoptosis and Inflammation by Regulating the Interleukin Family/Death Receptor Axis and Nrf2 Signaling Pathway. Biol Trace Elem Res 201, 1748–1760 (2023). https://doi.org/10.1007/s12011-022-03279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03279-3

Keywords

Navigation