Skip to main content
Log in

Hepatotoxicity and ALAD Activity Profile for Prediction of NOAEL of Metal Welding Fumes in Albino Rats

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Metal fume pollutants of urban Kano, a city of over 10 million people, and widespread metal works have increased exposure with related health effects. Few data on metal fume toxicity and atmospheric levels have been documented in Nigeria and Kano in particular. Hence, the work was aimed at evaluating the metal fume toxicity to laboratory rat species for setting the permissible limit of exposure in urban Kano. The investigation involved the collection of metal welding fumes and subsequent laboratory analysis. Experimental animals were then exposed intratracheally to varying doses of the fumes which were equivalent to normal metal workers’ daily routine of 2, 4, and 8 h for 3, 5, 10, and 20 years. Following euthanization, whole blood samples were collected and functions of liver and delta-aminolevunilic acid dehydratase were evaluated in the serum. Exposure to the fumes has caused significant mortality that was observed to be dose-dependent and statistically different (p < 0.05); moreover, the fumes had synergistically affected the functions of liver. In addition, the fumes had increased (statistically) the activity delta-aminolevinilic acid dehydratase. This has indicated that exposure to metal welding fumes being multi-elemental is toxic and had produced mortality at exposure to higher doses of metal welding fumes. It was therefore established from the study that no-observed-adverse-effect level (NOAEL) for metal welding fumes is 25.73 mg with LD50 of 270 mg which corresponds to the metal worker’s 4-h shifts daily for 5 years under existing working conditions. It was recommended that regular monitoring should be put in place to limit exposure and extent of engagement in metal works beyond NOAEL levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available in the manuscript. Any other data can be supplied on request.

References

  1. Harris MK (2002) Welding health and safety: a field guide for OEHS professionals. Fairfax, VA: American Industrial Hygiene Association; 2002. Fume & gas generation 214

  2. Meo SA, Al-Khlaiwi T (2003) Health hazards of welding fumes. Saudi Med J 24(11):1176–1182

    PubMed  Google Scholar 

  3. ATSDR (1999a). Toxicological profile for cadmium. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

  4. ATSDR (1999b). Toxicological profile for mercury. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

  5. ATSDR (2007a). Toxicological profile for arsenic. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

  6. ATSDR (2007b). Toxicological profile for lead. Atlanta, GA: Agency for Toxic Substances and Disease Registry.

  7. Antonini JM, Roberts JR, Schwegler-Berry D, Mercer RR (2013) Comparative microscopic study of human and rat lungs after overexposure to welding fume. Ann Occup Hyg 57(9):1167–1179. https://doi.org/10.1093/annhyg/met032

    Article  CAS  PubMed  Google Scholar 

  8. Brain JD, Knudson DE, Sorokin SP, Davis MA (1976) Pulmonary distribution of particles given by intratracheal instillation or by aerosol inhalation. Environ Res 11:13–33

    Article  CAS  PubMed  Google Scholar 

  9. Driscoll KE, Costa DL, Hatch G (2000) Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci 55:24–35

    Article  CAS  PubMed  Google Scholar 

  10. Henderson RF, Driscoll KE, Harkema JR, Lindenschmidt RC, Chang I, Maples KR, Barr EB (1995) A comparison of the inflammatory response of the lung to inhaled versus instilled particles in F344 rats. Fundam Appl Toxicol 24:183–197

    Article  CAS  PubMed  Google Scholar 

  11. Jakubowski M, Czerczak S (2014) A proposal for calculating the no-observed-adverse-effect level (NOAEL) for organic compounds responsible for liver toxicity based on their physicochemical properties. Int J Occup Med Environ Health 27(4):627–640. https://doi.org/10.2478/s13382-014-0277-5

    Article  PubMed  Google Scholar 

  12. Sani A, Abdullahi IL (2019) Effects of welding fumes on haematological parameters of male albino rats (Rattus norvegicus). Biochem Biophys Rep 19:100651

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sani A, Abdullahi IL, Ibrahim S (2021) Histopathological changes associated with exposure to metal welding fumes in some organs of Rattus norvegicus in Kano Nigeria. Toxicol Rep 8:422–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abdullahi IL, Sani A (2020) Welding fumes composition and their effects on blood heavy metals in albino rats. Toxicol Rep 7:1495–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. OECD (2018). Guideline for the testing of chemicals: chronic toxicity studies, 452. Adopted: 25th June 2018.

  16. Antonini JM, Roberts JR, Chapman RS (2010) Pulmonary toxicity & extra pulmonary tissue distribution of metals after repeated exposure to different welding fumes. Inhalation Toxicol 22:805–816

    Article  CAS  Google Scholar 

  17. Sriram K, Lin GX, Jefferson AM (2010) Mitochondrial dysfunction & loss of Parkinson’s disease linked proteins contribute to neurotoxicity of manganese-containing welding fumes. FASEB J 24:4989–5002

    CAS  PubMed  Google Scholar 

  18. International Commission on Radiological Protection (ICRP). (1994). Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Annals of the ICRP, 24: 1–482

  19. Antonini JM, Afshari AA, Stone S (2006) Design, construction, & characterization of a novel robotic welding fume generator & inhalation exposure system for laboratory animals. J Occup Environ Hyg 3:194–203

    Article  CAS  PubMed  Google Scholar 

  20. Stone KC, Mercer RR, Gehr P et al (1992) Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6:235–243

    Article  CAS  PubMed  Google Scholar 

  21. Inuwa HM, Aina VO, Aimola B, Ja’afaru L (2011) Determination of nephrotoxicity and hepatoxicity of monosodium glutamate (MSG) consumption. Br J Pharmacol Toxicol 2(3):148–153

    CAS  Google Scholar 

  22. Hoff J, Rlagt LV (2000) Methods of blood collection in the mouse. Lab animals 29:47–53

    Google Scholar 

  23. Ganesan AR, Subramani K, Balasubramanian B, Liu WC, Arasu MV, Al-Dhabi NA, Duraipandiyan V (2019) Evaluation of in vivo sub-chronic and heavy metal toxicity of under-exploited seaweeds for food application. J King Saudi Univ Sci. https://doi.org/10.1016/j.jksus.2019.10.005

    Article  Google Scholar 

  24. Osuala FI, Otitoloju AA, Igwo-Ezikpe MN (2014) Usefulness of liver & kidney function parameters as biomarkers of ‘heavy metals’ exposure in a mammalian model Mus musculus. Afr J Biochem Res 8(3):65–73

    Article  Google Scholar 

  25. Shalan MG, Mostafa MS, Hassouna MM, El-Nabi SEH, El-Refaie A (2005) Amelioration of lead toxicity on rat liver with vitamin C & silymarin supplements. Toxicology 206:1–15

    Article  CAS  PubMed  Google Scholar 

  26. Abou-Baker S, Ibrahim HB, Seham SK (2011) Effect of lactic acid bacteria against heavy metal toxicity in rats. J Am Sci 7(4):264–274

    Google Scholar 

  27. Asagba SO, Eriyamrem GE (2007) Oral cadmium exposure alters haematological and liver function parameters of rats fed a Nigerian-like diet. J Nutr Environ Med 16(3–4):267–274. https://doi.org/10.1080/13590840701775403

    Article  CAS  Google Scholar 

  28. Francielli WS, Gilson Z, Joao BTR, Simone NW, Juliana MF, Alexandre MF, Cristina WN (2005) Diphenyl diselenide reverses cadmium-induced oxidative damage on mice tissues. Chem Biol Interact 151(3):159–165

    Article  Google Scholar 

  29. Leena K, Veena S, Arti S, Shweta L, Sharma SH (2011) Protective role of Cori&rum sativum (Coriander) extracts against lead nitrate induced oxidative stress & tissue damage in the liver and kidney in male mice. Int J Appl Biol Pharm Technol 2(3):65–83

    Google Scholar 

  30. Shahjahan M, Sabitha KE, Jainu M, Shyamala-Devi CS (2004) Effect of Solanum trilobatum against carbon tetrachloride induced hepatic damage in albino rats. Indian J Med Res 120:194–198

    CAS  PubMed  Google Scholar 

  31. Dhembare AJ, Gholap AB, Reena K (2011) Haematological modulations in male European rabbit, Oryctolagus cuniculus (Linn.) exposed to potassium dihydrogen orthophosphate. J Exp Zool India 14(2):523–526

    Google Scholar 

  32. Matt C, Savitri A, Mihir P, Keith CF, Craig J, McClain, & Guy B, (2010) Polychlorinated biphenyls, lead, and mercury are associated with liver disease in American adults: NHANES 2003–2004. Environ Health Perspect 118(12):1735–42. https://doi.org/10.1289/ehp.1002720

    Article  CAS  Google Scholar 

  33. Ballatori N (2002) Transport of toxic metals by molecular mimicry. Environ Health Perspect 110(Suppl 5):689–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cave M, Deaciuc I, Mendez C, Song Z, Joshi-Barve S, Barve S (2007) Nonalcoholic fatty liver disease: predisposing factors & the role of nutrition. J Nutr Biochem 18(3):184–195

    Article  CAS  PubMed  Google Scholar 

  35. Cotrim HP, De Freitas LA, Freitas C, Braga L, Sousa R, Carvalho F (2004) Clinical and histopathological features of NASH in workers exposed to chemicals with or without associated metabolic conditions. Liver Int 24(2):131–135

    Article  PubMed  Google Scholar 

  36. Jihen EH, Imed M, Fatima H, Abdelhamid K (2008) Protective effects of selenium (Se) and zinc (Zn) on cadmium (Cd) toxicity in the liver and kidney of the rat: histology & Cd accumulation. Food Chem Toxicol 46:3522–3527

    Article  CAS  PubMed  Google Scholar 

  37. Karimi MM, Sani MJ, Mahmudabadi AZ, Sani AJ, Khatibi SR (2012) Effects of acute toxicity of cadmium in mice kidney cells. Iran J Toxicol 6(18):691–698

    Google Scholar 

  38. Nagano M, Shimada H, Funakoshi T, Yasutake Y (2000) Increase of calcium concentration in the testes of mice treated with rare earth metals. J Health Sci 46(4):314–316

    Article  CAS  Google Scholar 

  39. Deveci E, Deveci S (2011) The effects of cadmium chloride on the oesophagus of rats. Int J Morphol 29(3):678–680

    Article  Google Scholar 

  40. Coppo JA, Mussart NB, Fioranelli SA (2001) Physiological variation of enzymatic activities in blood of bull frog, Rana catesbeiana (Shaw, 1802). Rev Vet 12(13):22–27

    Google Scholar 

  41. Rajamanickam V, Muthuswamy N (2008) Effect of heavy metals induced toxicity on metabolic biomarkers in common carp (Cyprinus carpio L.). Maejo Int J Sci Technol 2(01):192–200

    CAS  Google Scholar 

  42. Antonini JM, Stone S, Roberts JR, Chen B, Schwegler-Berry D, Afshari AA (2007) Effect of short-term stainless steel welding fume inhalation exposure on lung inflammation, injury, and defense responses in rats. Toxicol Appl Pharmacol 223(3):234–245. https://doi.org/10.1016/j.taap.2007.06.020

    Article  CAS  PubMed  Google Scholar 

  43. Yang MJ, Yang YS, Sung JH, Kim JS, Cho KH, Lim CW (2009) Recurrent exposure to welding fumes induces insufficient recovery from inflammation. Inhalation Toxicol 21(4):337–346

    Article  CAS  Google Scholar 

  44. Yu IJ, Song KS, Maeng SH, Kim SJ, Sung JH, Han JH (2004) Inflammatory and genotoxic responses during 30-day welding-fume exposure period. Toxicol Lett 154(1–2):105–115

    Article  CAS  PubMed  Google Scholar 

  45. Halatek T, Stanislawska M, Kaminska I, Cieslak M, Swiercz R, Wasowicz W (2017) The time-dependent health & biochemical effects in rats exposed to stainless steel welding dust & its soluble form. J Environ Sci Health A Tox Hazard Subst Environ Eng 52(3):265–273

    Article  CAS  PubMed  Google Scholar 

  46. Antonini JM, Taylor MD, Millecchia L, Bebout AR, Roberts JR (2004) Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes. Toxicol Appl Pharmacol 200(3):206–218. https://doi.org/10.1016/j.taap.2004.04.022

    Article  CAS  PubMed  Google Scholar 

  47. Taylor MD, Roberts JR, Leonard SS, Shi X, Antonini JM (2003) Effects of welding fumes of differing composition & solubility on free radical production and acute lung injury and inflammation in rats. Toxicol Sci 75:181–219

    Article  CAS  PubMed  Google Scholar 

  48. Antonini JM, Taylor MD, Zimmer AT, Roberts JR (2004) Pulmonary responses to welding fumes: role of metal constituents. J Toxicol Environ Health A 67:233–249

    Article  CAS  PubMed  Google Scholar 

  49. Erdely A, Antonini JM, Salmen-Muniz R, Liston A, Hulderman T, Simeonova PP (2012) Type I interferon and pattern recognition receptor signaling following particulate matter inhalation. Part Fibre Toxicol 9(1):25–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Erdely A, Salmen-Muniz R, Liston A, Hulderman T, Zeidler-Erdely PC, Antonini JM (2011a) Relationship between pulmonary & systemic markers of exposure to multiple types of welding particulate matter. Toxicology 287(1–3):153–159

    Article  CAS  PubMed  Google Scholar 

  51. Solano-Lopez C, Zeidler-Erdely P, Hubbs A, Reynolds S, Roberts J, Taylor M, Young S, Castranova V, Antonini JM (2006) Welding fume exposure & associated inflammatory & hyperplastic changes in the lungs of tumor susceptible A/J mice. Toxicol Pathol 34:364–372

    Article  PubMed  Google Scholar 

  52. Zeidler-Erdely PC, Battelli LA, Stone S, Chen BT, Frazer DG, Young SH (2011) Short-term inhalation of stainless steel welding fume causes sustained lung toxicity but no tumorigenesis in lung tumor susceptible A/J mice. Inhalation Toxicol 23(2):112–120

    Article  CAS  Google Scholar 

  53. Zeidler-Erdely PC, Kashon ML, Battelli LA, Young SH, Erdely A, Roberts JR (2008) Pulmonary inflammation & tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume. Part Fibre Toxicol 5(1):12. https://doi.org/10.1186/1743-8977-5-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sastry KV, Shukla V (1990) Effects of cadmium on the intestinal absorption of some nutrients in the teleost fish Channa punctatus. Polln Res 9:141–148

    CAS  Google Scholar 

  55. Santhana V, Azariah J (2003) Effect of copper chloride on the enzyme activities of the crab Sesarma quadratum. Turk J Zool 27:253–256

    Google Scholar 

  56. Rani S, Gupta RK, Rani M (2015) Heavy metal induced toxicity in fish with special reference to zinc & cadmium. Int J Fish Aquat Stud 3(2):118–123

    Google Scholar 

  57. Halatek T, Stanislawska M, Kaminska I, Cieslak M, Swiercz R, Wasowicz W (2016) The time-dependent health & biochemical effects in rats exposed to stainless steel welding dust and its soluble form. J Environ Sci Health, Part A 0(0):1–9

    Google Scholar 

  58. Antonini JM, Roberts JR (2007) Chromium in stainless steel welding fume suppresses lung defense responses against bacterial infection in rats. J Immunotoxicol 4(2):117–127. https://doi.org/10.1080/15476910701336953

    Article  CAS  PubMed  Google Scholar 

  59. Haffor ASA, Alhazza IM (2007) Effects of lead & hyperoxia on lactatae dehydrogenase activity in rats. J Med Sci 7(3):452–456

    Article  CAS  Google Scholar 

  60. Farina M, Barbosa NBV, Nogueira CW, Folmer V, Zeni G, Rade LH, Braga LA, Rocha JBT (2002) Reaction of diphenyl diselenide with hydrogen peroxide & inhibition of daminolevulinate dehydratase from rat liver and cucumber leaves. Braz J Med Biol Res 35:623–631

    Article  CAS  PubMed  Google Scholar 

  61. Nogueira CW, Borges VC, Zeni G, Rocha JBT (2003b) Organochalcogens effects on aminolevulinate dehydratase activity from human erythrocytic cells in vitro. Toxicology 191:169–178

    Article  CAS  PubMed  Google Scholar 

  62. Nogueira CW, Soares FA, Nascimento PC, Muller D, Rocha JBT (2003b) 2,3-Dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase mercury- and cadmium induced inhibition of δ-aminolevulinate dehydratase. Toxicology 184:85–95

    Article  CAS  PubMed  Google Scholar 

  63. Santos FW, Oro T, Zeni G, Rocha JBmT, do Nascimento PC, Nogueira CW (2004) Cadmium induced testicular damage and its response to administration of succimer & diphenyl diselenide in mice. Toxicol Lett 152:255–263

    Article  CAS  PubMed  Google Scholar 

  64. Folmer V, Soares JCM, Rocha JBT (2002) Oxidative stress in mice is dependent on the free glucose content of the diet. Int J Biochem Cell Biol 34:1279–1286

    Article  CAS  PubMed  Google Scholar 

  65. Pande M, Flora SJS (2002) Lead induced oxidative damage and its response to combined administration of α-lipoic acid & succimers in rats. Toxicology 177:187–196

    Article  CAS  PubMed  Google Scholar 

  66. Pande M, Mehta A, Pant BP, Flora SJS (2001) Combined administration of a chelating agent and an antioxidant in the prevention & treatment of acute lead intoxication in rats. Environ Toxicol Pharmacol 9:173–184

    Article  CAS  PubMed  Google Scholar 

  67. Soares JCM, Folmer V, Rocha JBT (2003) Influence of dietary selenium supplementation and exercise on thiol-containing enzymes in mice. Nutrition 19:627–632

    Article  CAS  PubMed  Google Scholar 

  68. Tandon SK, Singh S, Prasad S, Srivastava S, Siddiqui MKJ (2002) Reversal of lead induced oxidative stress by chelating agent, antioxidant, or their combination in the rat. Environ Res 90:61–66

    Article  CAS  PubMed  Google Scholar 

  69. Gurer H, Ercal N (2000) Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic Biol Med 29:927–945

    Article  CAS  PubMed  Google Scholar 

  70. Kendall RJ, Erson TA, Baker RJ, Bens CM, Carr JA, Chiodo LA, Cobb GP III, Dickerson RL, Dixon KR, Frame LT, Hooper MJ, Martin CF, McMurry ST, Patino R, Smith EE, Theodorakis CW (2001) Ecotoxicology. In: Klaassen CD (ed) Casarett & Doull’s Toxicology: the Basic Science of Poisons, 6th edn. McGraw-Hill, New York, pp 1013–1045

    Google Scholar 

  71. Pain DJ (1989) Hematological parameters as predictors of blood lead and indicators of lead-poisoning in the black duck (Anas-Rubripes). Environ Pollut 60:67–81

    Article  CAS  PubMed  Google Scholar 

  72. Scheuhammer AM (1987) Erythrocyte d-aminolevulinic acid dehydratase in birds. II. The effects of lead exposure in vivo. Toxicology 45:165–175

    Article  CAS  PubMed  Google Scholar 

  73. Ahamed M, Siddiqui MKJ (2007) Environmental lead toxicity and nutritional factors. Clin Nutr 26:400–408

    Article  CAS  PubMed  Google Scholar 

  74. Halliwell B, Gutteridge JMC (Eds.) (2007) Free radicals in biology & medicine 4th ed., Oxford University Press, Oxford 440–487.

  75. Henny CJ, Blus LJ, Hoffman DJ, Sileo L, Audet DJ, Snyder MR (2000) Field evaluation of lead effects on Canada geese and mallards in the Coeur d’Alene River Basin, Idaho. Arch Environ Contam Toxicol 39(1):97–112

    Article  CAS  PubMed  Google Scholar 

  76. Elezaj IR, Selimi IQ, Letaj KRr, Millaku LB & Sefaja L (2013) Metal accumulation, blood δ-aminolevulinic acid dehydratase activity & micronucleated erythrocytes of feral pigeons (Columba livia) living near former lead-zinc smelter “Trepça” – Kosovo. E3S Web of Conferences, Proceedings of the 16th International Conference on Heavy Metals in the Environment, Biomonitoring of Ecosystems II 34001:4. https://doi.org/10.1051/e3sconf/20130134001

  77. Elezaj I, Selimi Q, Letaj K, Plakiqi A, Mehmeti SI, Milaimi A (2011) Metal bioaccumulation, enzymatic activity, total protein & hematology of feral pigeon (Columba livia), living in the courtyard of ferronickel smelter in Drenas. J Chem Health Risks 1(1):01–06

    Google Scholar 

  78. Pires JB, Miekeley N, Donangelo CM (2002) Calcium supplementation during lactation blunts erythrocyte lead levels and deltaaminolevulinic acid dehydratase zinc-reactivation in women nonexposed to lead and with marginal calcium intakes. Toxicol 175:247–255

    Article  CAS  Google Scholar 

  79. Yeong-Chul P, Myung-Haing C (2011) A new way in deciding NOAEL based on the findings from GLP-toxicity test. Toxicol Res 27(3):133–135

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The conception and design was formed by Ibrahim Lawal Abdullahi. Material preparation, data collection, and analysis were performed by Ali Sani. The first draft of the manuscript was written by Ali Sani and all authors commented on previous versions of the manuscript. Editing and review of the manuscript was done by Aminu Inuwa Darma. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali Sani.

Ethics declarations

Ethics Approval

This study was performed in line with OECD and the principles of the Declaration of Helsinki. Approval was granted by the College of Health Sciences Research Ethical Committee, Bayero University, Kano, Nigeria.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sani, A., Lawal Abdullahi, I. & Darma, A.I. Hepatotoxicity and ALAD Activity Profile for Prediction of NOAEL of Metal Welding Fumes in Albino Rats. Biol Trace Elem Res 201, 1781–1791 (2023). https://doi.org/10.1007/s12011-022-03273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03273-9

Keywords

Navigation