Skip to main content
Log in

Selenium Heals the Chlorpyrifos-Induced Oxidative Damage and Antioxidant Enzyme Levels in the Rat Tissues

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chlorpyrifos (CPF), mainly exposed by oral, dermal, or inhalation, is a broad-spectrum organophosphate pesticide used in pest control, increasing agricultural productivity, and being considered toxic to living things. Selenium (Se), an essential component of selenoenzymes and selenoproteins, is an essential element that protects cells from oxidative stress and has antioxidant properties. The study aimed to examine the oxidative stress caused by different doses of CPF exposure in brain, liver, and kidney tissues while observing the healing effect of Se application on tissue damage and antioxidant levels. A total of 56 rats were divided into seven different groups: 1st group control (water); 2nd group sham (corn oil); the 3rd group was CPF-L (5.4 mg/kg CPF); the 4th group was CPF-H (13.5 mg/kg CPF); the 5th group was Se (3 mg/kg Se); 6th group was CPF-L + Se (5.4 mg/kg CPF + 3 mg/kg Se); the 7th group was CPF-H + Se (13.5 mg/kg CPF + 3 mg/kg Se). The brain, liver, and kidney tissues were obtained from rats sacrificed 6 weeks later. Acetylcholinesterase (AChE), oxidant, and antioxidant parameters were examined in the tissues. The results suggest that CPF causes neurotoxicity, hepatotoxicity, and renal toxicity by altering AChE levels, inducing lipid peroxidation, and decreasing antioxidant systems. Se treatment increased the activities of AChE and, antioxidant defense system and reduced the malondialdehyde (MDA) levels in the brain, liver, and kidney tissues of rats. Se was found to heal and also protect these tissues against these changes resulting from CPF exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data sets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle-based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  2. Gill HK and Garg H (2014) Pesticides: environmental ımpacts and management strategies. In Larramendy ML and Soloneski S (Eds.), Pesticides-Toxic Aspects. IntechOpen. https://doi.org/10.5772/57399

  3. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  4. Das A, Singh J, Yogalakshmi K (2017) Laccase immobilized magnetic iron nanoparticles: fabrication and its performance evaluation in chlorpyrifos degradation. Int Biodeterior Biodegrad 117:183–189

    Article  CAS  Google Scholar 

  5. Zheng T, Chen K, Chen W, Wu B, Sheng Y, Xiao Y (2019) Preparation and characterization of polylactic acid modified polyurethane microcapsules for controlled-release of chlorpyrifos. J Microencaps 36:62–71

    Article  CAS  Google Scholar 

  6. Ozturk Kurt B, Konukoglu D, Kalayci R, Ozdemir S (2022) Investigation of the protective role of selenium in the changes caused by chlorpyrifos in trace elements, biochemical and hematological parameters in rats. Biol Trace Elem Res 200(1):228–237

    Article  CAS  PubMed  Google Scholar 

  7. Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, Bertollini R, Bose-O’Reilly S, Boufford JI, Breysse PN (2018) The Lancet Commission on pollution and health. Lancet 391:462–512

    Article  PubMed  Google Scholar 

  8. Burke RD, Todd SW, Lumsden E, Mullins RJ, Mamczarz J, Fawcett WP, Gullapalli RP, Randall WR, Pereira EF, Albuquerque EX (2017) Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: from clinical findings to preclinical models and potential mechanisms. J Neurochem 142:162–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eddleston M (2000) Patterns and problems of deliberate self-poisoning in the developing world. QJM Int J Med 93:715–731

    Article  CAS  Google Scholar 

  10. Knights KM, Rowland A, Miners JO (2013) Renal drug metabolism in humans: the potential for drug–endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br J Clin Pharmacol 76:587–602

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tanvir EM, Afroz R, Chowdhury M, Gan SH, Karim N, Islam MN, Khalil MI (2016) A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Hum Exp Toxicol 35(9):991–1004

    Article  CAS  PubMed  Google Scholar 

  12. Kehrer JP (1993) Free radicals as mediator of tissue injury and disease. Crit Rev Toxicol 23:21–48

    Article  CAS  PubMed  Google Scholar 

  13. Bahtiyar N, Yoldas A, Abbak Y, Dariyerli N, Toplan S (2021) Erythroid microRNA and oxidant status alterations in l-thyroxine-induced hyperthyroid rats: effects of selenium supplementation. Minerva Endocrinol (Torino) 46(1):107–115

    PubMed  Google Scholar 

  14. Fereidouni S, Kumar RR, Chadha VD, Dhawan DK (2019) Quercetin plays a protective role in oxidative induced apoptotic events during chronic chlorpyrifos exposure to rats. J Biochem Mol Toxicol 33(8):e22341

    Article  PubMed  Google Scholar 

  15. Kalender Y, Kaya S, Durak D, Uzun FG, Demir F (2012) Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environ Toxicol Pharmacol 33(2):141–148

    Article  CAS  PubMed  Google Scholar 

  16. Khalaf AA, Ahmed WMS, Moselhy WA, Abdel-Halim BR, Ibrahim MA (2019) Protective effects of selenium and nano selenium on bisphenol-induced reproductive toxicity in male rats. Hum Exp Toxicol 38(4):398–408

    Article  CAS  PubMed  Google Scholar 

  17. Heikal TM, El-Sherbiny M, Hassan SA, Arafa AF, Ghanem H (2012) Antioxidant effect of selenium on hepatotoxicity induced by chlorpyrifos in male rats. Int J Pharm Pharm Sci 4:603–609

    CAS  Google Scholar 

  18. Ezzi L, Belhadj SI, Haouas Z, Sakly A, Grissa I, Chakroun S, Kerkeni E, Hassine M, Mehdi M, Ben Cheikh H (2016) Histopathological and genotoxic effects of chlorpyrifos in rats. Environ Sci Pollut Res Int 23(5):4859–4867

    Article  CAS  PubMed  Google Scholar 

  19. Lamfon HA (2014) Effect of selenium on chlorpyrifos-induced thyroid toxicity in albino rats. Research in Endocrinology 2014:1–11

    Article  Google Scholar 

  20. Perez-Carreon JL, Dargent C, Merhi M, Fattel-Fazenda S, ArcePopoca E, Villa-Treviño S, Rouimi P (2009) Tumor promoting and co-carcinogenic effects in medium-term rat hepatocarcinogenesis are not modified by co-administration of 12 pesticides in mixture at acceptable daily intake. Food Chem Toxicol 47(3):540–546

    Article  CAS  PubMed  Google Scholar 

  21. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  PubMed  Google Scholar 

  22. Beutler E, Kelly BM (1963) The effect of sodium nitrite on red cell GSH. Experientia 19:96–97

    Article  CAS  PubMed  Google Scholar 

  23. Jia W, Shen D, Yu K, Zhong J, Li Z, Ye Q, Jiangi J, Wang W (2021) Reducing the environmental risk of chlorpyrifos application through appropriate agricultural management: evidence from carbon-14 tracking. J Agric Food Chem 69(26):7324–7333

    Article  CAS  PubMed  Google Scholar 

  24. AlKahtane AA, Ghanem E, Bungau SG, Alarifi S, Ali D, AlBasher G, Alkahtani S, Aleya L, Abdel-Daim MM (2020) Carnosic acid alleviates chlorpyrifos-induced oxidative stress and inflammation in mice cerebral and ocular tissues. Environ Sci Pollut Res 27:11663–11670

    Article  CAS  Google Scholar 

  25. Aboubakr M, Elshafae SM, Abdelhiee EY, Fadl SE, Soliman A, Abdelkader A, Abdel-Daim MM, Bayoumi KA, Baty RS, Elgendy E, Elalfy A, Baioumy B, Ibrahim SF, Abdeen A (2021) Antioxidant and anti-inflammatory potential of thymoquinone and lycopene mitigate the chlorpyrifos-induced toxic neuropathy. Pharmaceuticals (Basel) 14(9):940

    Article  CAS  PubMed  Google Scholar 

  26. Čadež T, Kolić D, Šinko G, Kovarik Z (2021) Assessment of four organophosphorus pesticides as inhibitors of human acetylcholinesterase and butyrylcholinesterase. Sci Rep 11:21486. https://doi.org/10.1038/s41598-021-00953-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uchendu C, Ambali SF, Ayo JO, Esievo KAN (2017) The protective role of alpha-lipoic acid on long-term exposure of rats to the combination of chlorpyrifos and deltamethrin pesticides. Toxicol Ind Health 33(2):159–170

    Article  CAS  PubMed  Google Scholar 

  28. Türkmen R, Özdemir M (2015) Klorprifos-Etil uygulanan diyabetli ratlarda likopenin antioksidan ve hipoglisemik etkilerinin araştırılması. Kocatepe Vet 8(1):1–17

    Google Scholar 

  29. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438. https://doi.org/10.1155/2014/360438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kopjar N, Žunec S, Mendaš G, Micek V, Kašuba V, Mikolić A, Lovaković BT, Milić M, Pavičić I, Čermak AMM, Pizent A, Lucić Vrdoljak A, Želježić D (2018) Evaluation of chlorpyrifos toxicity through a 28-day study: cholinesterase activity, oxidative stress responses, parent compound/metabolite levels, and primary DNA damage in blood and brain tissue of adult male Wistar rats. Chem Biol Interact 279:51–63

    Article  CAS  PubMed  Google Scholar 

  31. Almeer RS, Kassab RB, AlBasher GI, Alarifi S, Alkahtani S, Ali D, Abdel Moneim AE (2018) Royal jelly mitigates cadmium-induced neuronal damage in mouse cortex. Mol Biol Rep 46(1):119–131

    Article  PubMed  Google Scholar 

  32. Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pardridge WM (1997) Drug delivery to the brain. J Cereb Blood Flow Metab 17:713–731

    Article  CAS  PubMed  Google Scholar 

  34. Abbott NJ (2005) Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol 25(1):5–23

    Article  PubMed  Google Scholar 

  35. Kalra A, Yetiskul E, Wehrle CJ, Faiz T (2022) Physiology, liver In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing https://www.ncbi.nlm.nih.gov/books/NBK535438. Accessed 25 March 2022

  36. Garza AZ, Park SB, Kocz R (2022) Drug elimination. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing https://www.ncbi.nlm.nih.gov/books/NBK547662/. Accessed 25 March 2022

  37. Uzun FG, Kalender Y (2013) Chlorpyrifos induced hepatotoxic and hematologic changes in rats: the role of quercetin and catechin. Food and Chemic Toxicology 55:549–556

    Article  CAS  Google Scholar 

  38. Yazdinezhad A, Abbasian M, Hojjat Hosseini S, Naserzadeh P, Agh-Atabay AH, Hosseini MJ (2017) Protective effects of Ziziphora tenuior extract against chlorpyrifos induced liver and lung toxicity in rat: mechanistic approaches in subchronic study. Environ Toxicol 32(9):2191–2202

    Article  CAS  PubMed  Google Scholar 

  39. Sharma S, Singh P, Chadha P, Saini HS (2019) Toxicity assessment of chlorpyrifos on different organs of rat: exploitation of microbial-based enzymatic system for neutralization. Environ Sci Pollut Res Int 26(29):29649–29659

    Article  CAS  PubMed  Google Scholar 

  40. Rekha R, Raina S, Hamid S (2013) Histopathological effects of pesticide-chlorpyrifos on kidney in albino rats. Int J Res Med Sci 1:465–475

    Article  Google Scholar 

  41. Ismail AA, Hendy O, Abdel Rasoul G, Olson JR, Bonner MR, Rohlman DS (2021) Acute and cumulative effects of repeated exposure to chlorpyrifos on the liver and kidney function among Egyptian adolescents. Toxics 9(6):137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, and Hernández-Carlos B (2019) Chapter: antioxidant compounds and their antioxidant mechanism. In (Ed.), Antioxidants. IntechOpen. https://doi.org/10.5772/intechopen.85270. Accessed 25 March 2022

  43. Sarıkaya E and Doğan S (2020) Glutathione peroxidase in health and diseases. In (Ed.), Glutathione system and oxidative stress in health and disease. IntechOpen https://doi.org/10.5772/intechopen.91009. Accessed 25 March 2022

  44. Saoudi M, Hmida IB, Kammoun W, Rebah FB, Jamoussi K, Feki AE (2018) Protective effects of oil of Sardinella pilchardis against subacute chlorpyrifos-induced oxidative stress in female rats. Arch Environ Occup Health 73(2):128–135

    Article  CAS  PubMed  Google Scholar 

  45. Owumi SE, Dim UJ (2019) Manganese suppresses oxidative stress, inflammation and caspase-3 activation in rats exposed to chlorpyrifos. Toxicol Rep 6:202–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaur S, Singla N, Dhawan DK (2019) Neuro-protective potential of quercetin during chlorpyrifos induced neurotoxicity in rats. Drug Chem Toxicol 42(2):220–230

    Article  CAS  PubMed  Google Scholar 

  47. Khalaf AA, Ogaly HA, Ibrahim MA, Abdallah AA, Zaki AR, Tohamy AF (2022) The reproductive ınjury and oxidative testicular toxicity ınduced by chlorpyrifos can be restored by zinc in male rats. Biol Trace Elem Res 200(2):551–559

    Article  CAS  PubMed  Google Scholar 

  48. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  PubMed  Google Scholar 

  49. Brigelius-Flohe R, Flohe L (2017) Selenium and redox signaling. Arch Biochem Biophys 617:48–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank graphic artist Deniz KURT for drawing experimental design.

Funding

The present work was supported by the Istanbul University Scientific Research Projects Unit (Project No: TDK-2016–20474 and BEK-2017–26167).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Bahar Ozturk Kurt and Semra Ozdemır. The first draft of the manuscript was written by Bahar Ozturk Kurt, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bahar Ozturk Kurt.

Ethics declarations

Ethics Approval

The Animal Experiments Local Ethics Committee approved all animal procedures of Istanbul University (approval number was 2015/79).

Conflict of İnterest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozturk Kurt, B., Ozdemir, S. Selenium Heals the Chlorpyrifos-Induced Oxidative Damage and Antioxidant Enzyme Levels in the Rat Tissues. Biol Trace Elem Res 201, 1772–1780 (2023). https://doi.org/10.1007/s12011-022-03271-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03271-x

Keywords

Navigation