Skip to main content
Log in

Influence of Dietary Selenium on the Oxidative Stress in Horses

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The objective of this review was to analyze the effect of dietary selenium on oxidative stress in horses by considering past and recent bibliographic sources. Some research was done on oxidative stress, related pathologies and how selenium regulates oxidative stress. Oxidizing molecules are molecules that can accept electrons from the substances with which they react. Oxidizing These molecules, of oxidizing, are found naturally in any organism, and there are antioxidant mechanisms that regulate its activity. However, when the body is stressed, oxidizing molecules outperform the antioxidants, causing an imbalance known as oxidative stress. Among antioxidant molecules, selenium can act as an important antioxidant in the body. The antioxidant activity is based on an enzyme called glutathione peroxidase, which depends on selenium and controls the activity of oxidizing molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable

Abbreviations

DNA:

Deoxyribonucleic acid

GPx:

Glutathione peroxidase

H2O2 :

Hydrogen peroxide

LOO •:

Lipid peroxyl radical

Lipid OOH:

Lipid peroxides

NADPH:

Nicotinamide adenine dinucleotide phosphate

ROS:

Reactive oxygen species

SeMet:

Selenomethionine

SELENOP:

Selenoprotein

SCLY:

Selenocysteine lyase

SECIS:

Selenocysteine insertion sequence

SeCysS:

SeCys synthase

References

  1. Joshua Loke WS, Lim MY, Lewis CR (2014) Thomas PS. Oxidative stress in lung cancer. Cancer Oxidative Stress and Dietary Antioxidants 2014:23–32. https://doi.org/10.1016/B978-0-12-405205-5.00003-9

    Article  CAS  Google Scholar 

  2. Kirschvink N, de Moffarts B, Lekeux P (2008) The oxidant/antioxidant equilibrium in horses. Vet J 177:178–191. https://doi.org/10.1016/J.TVJL.2007.07.033

    Article  CAS  PubMed  Google Scholar 

  3. Mou D, Ding D, Yng M, Jiang X (2021) Maternal organic selenium supplementation during gestation improves the antioxidant capacity and reduces the inflammation level in tbe intestine of offspring through thr NG-Kb and ERK/Beclin-1 pathways. Food Funct 12:315–327

    Article  CAS  PubMed  Google Scholar 

  4. Williams CA (2016) Horse species symposium: the effect of oxidative stress during exercise in the horse. J Anim Sci 94:4067–4075

    Article  CAS  PubMed  Google Scholar 

  5. Zakeri N, Klishadi MR, Asbaghi O, Naeini F, Afshafar M, Mirzadeh E, Naserizadeh K (2021) Selenium supplementation and oxidative stress: a review. PharmNutrition 17:100263

  6. Mills PC, Smith NC, Casas I, Harris P, Harris RC, Marlin DJ (1996) Effects of exercise intensity and environmental stress on indices of oxidative stress and iron homeostasis during exercise in the horse. Eur J Appl Physiol 74:60–66

    Article  CAS  Google Scholar 

  7. Wunderlich F, Al-Quraishy S, Steinbrenner H, Sies H, Dkhil MA (2014) Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant-based natural products. Parasitol Res 113:3547–3556

    Article  PubMed  Google Scholar 

  8. Bhabak KP, Mugesh G (2010) Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 43:1408–1419

    Article  CAS  PubMed  Google Scholar 

  9. Brummer M, Hayes S, Dawson KA, Lawrence LM (2013) Measures of antioxidant status of the horse in response to selenium depletion and repletion. J Anim Sci 91:2158–2168

    Article  CAS  PubMed  Google Scholar 

  10. Mrazova J, Kopcekova J, Debreceni O, Habanova M, Jancichova K (2021) Effect of short term consumption of pork supplemented by organic selenium on selenium concentration, antioxidant status and lipid parameters of consumers.  J Environ Sci Health Part B 56:884–890

  11. Radakovic M, Davitkov D, Borozan S, Stojanovic S, Stevanovic J, Krstic V (2016) Oxidative stress and DNA damage in horses naturally infected with Theileria equi. Vet J 217:112–118

    Article  CAS  PubMed  Google Scholar 

  12. Lykkesfeldt J, Svendsen O (2007) Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet J 173:502–511

    Article  CAS  PubMed  Google Scholar 

  13. Ball BA (2008) Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Anim Reprod Sci 107:257–267

    Article  CAS  PubMed  Google Scholar 

  14. Alexander SL, Irvine CHG (1998) The effect of social stress on adrenal axis activity in horses: the importance of monitoring corticosteroid-binding globulin capacity. J Endocrinol 157:425–432. https://doi.org/10.1677/joe.0.1570425

    Article  CAS  PubMed  Google Scholar 

  15. Spiers JG, Chen H-JC, Sernia C, Lavidis NA (2015) Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress. Front Neurosci 8:456

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rojkind M, Dominguez-Rosales J-A, Nieto N, Greenwel P (2002) Role of hydrogen peroxide and oxidative stress in healing responses. Cell Mol Life Sci CMLS 59:1872–1891

    Article  CAS  PubMed  Google Scholar 

  17. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barchielli G, Capperucci A, Tanini D (2022) The role of selenium in pathologies: an updated review. Antioxidant 11:251

    Article  CAS  Google Scholar 

  19. Derochette S, Franck T, Mouithys-Mickalad A, Ceusters J, Deby-Dupont G, Lejeune J-P (2013) Curcumin and resveratrol act by different ways on NADPH oxidase activity and reactive oxygen species produced by equine neutrophils. Chem Biol Interact 206:186–193

    Article  CAS  PubMed  Google Scholar 

  20. Youssef MA, El-Khodery SA, Ibrahim HMM (2012) Antioxidant trace elements in serum of draft horses with acute and chronic lower airway disease. Biol Trace Elem Res 150:123–129

    Article  PubMed  Google Scholar 

  21. Cardenas E, Ghosh R (2013) Vitamin E: a dark horse at the crossroad of cancer management. Biochem Pharmacol 86:845–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Divers TJ, Cummings JE, de Lahunta A, Hintz HF, Mohammed HO (2006) Evaluation of the risk of motor neuron disease in horses fed a diet low in vitamin E and high in copper and iron. Am J Vet Res 67:120–126

    Article  CAS  PubMed  Google Scholar 

  23. McGorum BC, Fry SC, Wallace G, Coenen K, Robb J, Williamson G (2000) Properties of herbage in relation to equine dysautonomia: biochemical composition and antioxidant and prooxidant actions. J Agric Food Chem 48:2346–2352

    Article  CAS  PubMed  Google Scholar 

  24. Burns EN, Finno CJ (2018) Equine degenerative myeloencephalopathy: prevalence, impact, and management. Vet Med Res Rep 9:63

    Google Scholar 

  25. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  26. Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinogenesis 5:14

    Article  Google Scholar 

  27. Barelli S, Canellini G, Thadikkaran L, Crettaz D, Quadroni M, Rossier JS (2008) Oxidation of proteins: basic principles and perspectives for blood proteomics. PROTEOMICS–Clin Applications 2:142–57

    Article  CAS  Google Scholar 

  28. Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:2014

    Article  Google Scholar 

  29. Santos-Sánchez NF, Salas-Coronado R, Villanueva-Cañongo C, Hernández-Carlos B. (2019) Antioxidant compounds and their antioxidant mechanism. IntechOpen London, UK; 2019

  30. Deaton CM (2006) The role of oxidative stress in an equine model of human asthma. Redox Rep 11:46–52

    Article  CAS  PubMed  Google Scholar 

  31. Alfonso-Prieto M, Biarnés X, Vidossich P, Rovira C (2009) The molecular mechanism of the catalase reaction. J Am Chem Soc 131:11751–11761

    Article  CAS  PubMed  Google Scholar 

  32. Prabhakar R, Vreven T, Morokuma K, Musaev DG (2005) Elucidation of the mechanism of selenoprotein glutathione peroxidase (GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. Biochemistry 44:11864–11871

    Article  CAS  PubMed  Google Scholar 

  33. Hart PJ, Balbirnie MM, Ogihara NL, Nersissian AM, Weiss MS, Valentine JS (1999) A structure-based mechanism for copper−zinc superoxide dismutase. Biochemistry 38:2167–2178

    Article  CAS  PubMed  Google Scholar 

  34. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Quinn PJ (2000) The location and function of vitamin E in membranes. Mol Membr Biol 17:143–156

    Article  PubMed  Google Scholar 

  36. Mukai K, Tokunaga A, Itoh S, Kanesaki Y, Ohara K, Nagaoka S (2007) Structure− activity relationship of the free-radical-scavenging reaction by vitamin E (α-, β-, γ-, δ-Tocopherols) and ubiquinol-10: pH dependence of the reaction rates. J Phys Chem B 111:652–662

    Article  CAS  PubMed  Google Scholar 

  37. Tu Y-J, Njus D, Schlegel HB (2017) A theoretical study of ascorbic acid oxidation and HOO/O 2− radical scavenging. Org Biomol Chem 15:4417–4431

    Article  CAS  PubMed  Google Scholar 

  38. Pálla T, Mirzahosseini A, Noszál B (2020) Species-specific, ph-independent, standard redox potential of selenocysteine and selenocysteamine. Antioxidants 9:465

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brasted, R.C (2019) Selenium. Encyclopedia Britannica. https://www.britannica.com/science/selenium. Accessed 28 Aug 2019

  40. Calamari L, Ferrari A, Bertin G (2009) Effect of selenium source and dose on selenium status of mature horses. J Anim Sci 87:167–178

    Article  CAS  PubMed  Google Scholar 

  41. Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am Coll Nutr 21:223–232

    Article  CAS  PubMed  Google Scholar 

  42. Esmaeili S, Khosravi-Darani K, Pourahmad R, Komeili R (2012) An experimental design for production of selenium-enriched yeast. World Appl Sci 19:31–37

    CAS  Google Scholar 

  43. Ellis AD, Hill J (2005) Nutritional physiology of the horse. Nottingham University Press, Nottingham, pp 361

  44. Seale LA (2019) Selenocysteine β-Lyase: biochemistry, regulation, and physiological role of the selenocysteine decomposition enzyme. Antioxidants 8:357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kang D, Lee J, Wu C, Guo X, Lee BJ, Chun J-S (2020) The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. Exp Mol Med 52:1198–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tinggi U (2008) Selenium: its role as antioxidant in human health. Environ Health Prev Med 13:102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54

    Article  CAS  PubMed  Google Scholar 

  49. Chavatte L, Brown BA, Driscoll DM (2005) Ribosomal protein L30 is a component of the UGA-selenocysteine recoding machinery in eukaryotes. Nat Struct Mol Biol 12:408–416

    Article  CAS  PubMed  Google Scholar 

  50. Howard MT, Copeland PR (2019) New directions for understanding the codon redefinition required for selenocysteine incorporation. Biol Trace Elem Res 192:18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Zhang J, Zhong Y, Qin L, Li J (2021) Sex-dimorphic distribution and antioxidative effects of selenomethionine and se-methylselenocysteine supplementation. J Food Sci 85:5424–5438

    Article  Google Scholar 

  52. Lv H, Zhen C, Liu J, Yang P, Hu L, Shang P (2019) Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy. Oxid Med Cell Longev 2019:2019

    Article  Google Scholar 

  53. Chang C, Worley BL, Phaëton R, Hempel N (2020) Extracellular glutathione peroxidase GPx3 and its role in cancer. Cancers 12:2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors wrote the manuscript and revised the manuscript, reviewed, and agreed on the final manuscript before submission.

Corresponding author

Correspondence to Mona M. M. Y. Elghandour.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Culhuac, E.B., Elghandour, M.M.M.Y., Adegbeye, M.J. et al. Influence of Dietary Selenium on the Oxidative Stress in Horses. Biol Trace Elem Res 201, 1695–1703 (2023). https://doi.org/10.1007/s12011-022-03270-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03270-y

Keywords

Navigation