Skip to main content
Log in

Chronic Psychological Stress Disrupts Iron Metabolism and Enhances Hepatic Mitochondrial Function in Mice

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

To explore the changes in iron metabolism and mitochondrial function exposed to chronic psychological stress, seventy-five male mice aged 5 ~ 6 weeks were randomly sorted into 2 groups: control group and chronic psychological stress group. Mice were conducted by communication box to induce psychological stress for 21 consecutive days. The results showed that chronic psychological stress led to a significant reduction in average daily gain (P < 0.01) and the final weight (P < 0.05). Chronic psychological stress greatly increased plasma and duodenal iron level (P < 0.05), whereas markedly decreased hepatic iron content in mice (P < 0.05). Increasing expression of duodenal DCYTB and FPN (P < 0.05) was observed in mice exposed to chronic psychological stress. Moreover, chronic psychological stress greatly enhanced hepatic TFR1, FTL, and FPN protein expression (P < 0.05) in mice. Additionally, chronic psychological stress enhanced the levels of hepatic NADH, NAD + , ATP, mtDNA content, mtDNA-encoded genes, and the activity of mitochondrial complex I and II (P < 0.05). Taken together, chronic psychological stress impairs growth, disrupts iron metabolism, and enhances hepatic mitochondrial function in mice. These results will provide new insights for understanding the mechanisms of iron metabolism and mitochondrial function during chronic psychological stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ATP6:

ATP synthase F0 subunit 6

ATP8:

ATP synthase F0 subunit 8

COX 1-3:

Cytochrome c oxidase subunit 1–3

CYTB:

Cytochrome b

DCYTB:

Duodenal cytochrome b

DMT1:

Divalent metal transporter

FPN:

Ferroportin

FTH:

Ferritin heavy chain

FTL:

Ferritin light chain

ND1-6:

NADH dehydrogenase subunit 1–6

ND4L:

NADH dehydro genase subunit 4L

Ppia:

Peptidylprolyl isomerase A

TS:

Transferrin saturation

TIBC:

Total iron-binding capacity

TF:

Transferrin

TFR1:

Transferrin receptor 1

TFR2:

Transferrin receptor 2

UIBC:

Unsaturated iron-binding capacity

ZIP14:

ZRT/IRT-like Protein 14

References

  1. Chiancone E, Ceci P (2010) The multifaceted capacity of Dps proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta 1800:798–805. https://doi.org/10.1016/j.bbagen.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  2. Lill R, Mühlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486. https://doi.org/10.1146/annurev.cellbio.22.010305.104538

    Article  CAS  PubMed  Google Scholar 

  3. Tsoi J, Robert L, Paraiso K, Galvan C, Sheu KM, Lay J, Wong DJ, Atefi M, Shirazi R, Wang X, Braas D, Grasso CS, Palaskas N, Ribas A, Graeber TG (2018) Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 33:890–904. https://doi.org/10.1016/j.ccell.2018.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Das A, Menon V (2020) Spatiotemporal integrity and spontaneous nonlinear dynamic properties of the Salience network revealed by human intracranial electrophysiology: a multicohort replication. Cereb Cortex 30:5309–5321. https://doi.org/10.1093/cercor/bhaa111

    Article  PubMed  PubMed Central  Google Scholar 

  5. McKie AT, Latunde-Dada GO, Miret S, McGregor JA, Anderson GJ, Vulpe CD, Wrigglesworth JM, Simpson RJ (2002) Molecular evidence for the role of a ferric reductase in iron transport. Biochem Soc Trans 30:722–724. https://doi.org/10.1042/bst0300722

    Article  CAS  PubMed  Google Scholar 

  6. Esparza A, Gerdtzen ZP, Olivera-Nappa A, Salgado JC, Núñez MT (2015) Iron-induced reactive oxygen species mediate transporter DMT1 endocytosis and iron uptake in intestinal epithelial cells. Am J Physiol Cell Physiol 309:C558-567. https://doi.org/10.1152/ajpcell.00412.2014

    Article  CAS  PubMed  Google Scholar 

  7. Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781. https://doi.org/10.1038/35001596

    Article  CAS  PubMed  Google Scholar 

  8. Bresgen N, Eckl PM (2015) Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 5:808–847. https://doi.org/10.3390/biom5020808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang N, Yu X, Xie J, Xu H (2021) New insights into the role of ferritin in iron homeostasis and neurodegenerative diseases. Mol Neurobiol 58:2812–2823. https://doi.org/10.1007/s12035-020-02277-7

    Article  CAS  PubMed  Google Scholar 

  10. Paul BT, Manz DH, Torti FM, Torti SV (2017) Mitochondria and iron: current questions. Expert Rev Hematol 10:65–79. https://doi.org/10.1080/17474086.2016.1268047

    Article  CAS  PubMed  Google Scholar 

  11. Gao J, Zhou Q, Wu D, Chen L (2021) Mitochondrial iron metabolism and its role in diseases. Clin Chim Acta 513:6–12. https://doi.org/10.1016/j.cca.2020.12.005

    Article  CAS  PubMed  Google Scholar 

  12. Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME (2018) Regulation of mitochondrial electron transport chain assembly. J Mol Biol 430:4849–4873. https://doi.org/10.1016/j.jmb.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  13. Gustafsson CM, Falkenberg M, Larsson NG (2016) Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem 85:133–160. https://doi.org/10.1146/annurev-biochem-060815-014402

    Article  CAS  PubMed  Google Scholar 

  14. Sun X, John JCS (2016) The role of the mtDNA set point in differentiation, development and tumorigenesis. Biochem J 473:2955–2971. https://doi.org/10.1042/BCJ20160008

    Article  CAS  PubMed  Google Scholar 

  15. Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE (2020) Thinking outside the nucleus: mitochondrial DNA copy number in health and disease. Mitochondrion 53:214–223. https://doi.org/10.1016/j.mito.2020.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao X, Campian JL, Qian M, Sun SF, Eaton JW (2009) Mitochondrial DNA damage in iron overload. J Biol Chem 284:4767–4775. https://doi.org/10.1074/jbc.M806235200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wei C, Zhou J, Huang X, Li M (2008) Effects of psychological stress on serum iron and erythropoiesis. Int J Hematol 88:52–56. https://doi.org/10.1007/s12185-008-0105-4

    Article  PubMed  Google Scholar 

  18. Li H, Jiang S, Yang C, Yang S, He B, Ma W, Zhao R (2017) Long-term dexamethasone exposure down-regulates hepatic TFR1 and reduces liver iron concentration in rats. Nutrients 9:617–629. https://doi.org/10.3390/nu9060617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo S, Yang C, Jiang S, Ni Y, Zhao R, Ma W (2020) Repeated restraint stress enhances hepatic TFR2 expression and induces hepatic iron accumulation in rats. Biol Trace Elem Res 196:590–596. https://doi.org/10.1007/s12011-019-01956-4

    Article  CAS  PubMed  Google Scholar 

  20. Magarinos AM, Verdugo JM, McEwen BS (1997) Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 94:14002–14008. https://doi.org/10.1073/pnas.94.25.14002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu W, Zhou C (2012) Corticosterone reduces brain mitochondrial function and expression of mitofusin, BDNF in depression-like rodents regardless of exercise preconditioning. Psychoneuroendocrinology 37:1057–1070. https://doi.org/10.1016/j.psyneuen.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  22. Gak IA, Radovic SM, Dukic AR, Janjic MM, Stojkov-Mimic NJ, Kostic TS, Andric SA (2015) Stress triggers mitochondrial biogenesis to preserve steroidogenesis in Leydig cells. Biochim Biophys Acta 1853:2217–2227. https://doi.org/10.1016/j.bbamcr.2015.05.030

    Article  CAS  PubMed  Google Scholar 

  23. Katsura M, Mohri Y, Shuto K, Tsujimura A, Ukai M, Ohkuma S (2002) Psychological stress, but not physical stress, causes increase in diazepam binding inhibitor (DBI) mRNA expression in mouse brains. Brain Res Mol Brain Res 104:103–109. https://doi.org/10.1016/s0169-328x(02)00219-x

    Article  CAS  PubMed  Google Scholar 

  24. Chen J, Shen H, Chen C, Wang W, Yu S, Zhao M, Li M (2009) The effect of psychological stress on iron absorption in rats. BMC Gastroenterol 9:83–88. https://doi.org/10.1186/1471-230X-9-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao M, Chen J, Wang W, Wang L, Ma L, Shen H, Li M (2008) Psychological stress induces hypoferremia through the IL-6-hepcidin axis in rats. Biochem Biophys Res Commun 373:90–93. https://doi.org/10.1016/j.bbrc.2008.05.166

    Article  CAS  PubMed  Google Scholar 

  26. Kim KS, Han PL (2006) Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters. J Neurosci Res 83:497–507. https://doi.org/10.1002/jnr.20754

    Article  CAS  PubMed  Google Scholar 

  27. Ulrich-Lai YM, Figueiredo HF, Ostrander MM, Choi DC, Engeland WC, Herman JP (2006) Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab 291:E965-973. https://doi.org/10.1152/ajpendo.00070.2006

    Article  CAS  PubMed  Google Scholar 

  28. Matsuhisa F, Kitamura N, Satoh E (2014) Effects of acute and chronic psychological stress on platelet aggregation in mice. Stress 17:186–192. https://doi.org/10.3109/10253890.2014.888548

    Article  CAS  PubMed  Google Scholar 

  29. Packard AEB, Ghosal S, Herman JP, Woods SC, Ulrich-Lai YM (2014) Chronic variable stress improves glucose tolerance in rats with sucrose-induced prediabetes. Psychoneuroendocrinology 47:178–188. https://doi.org/10.1016/j.psyneuen.2014.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang S, Guo T, Guo S, Gao J, Ni Y, Ma W, Zhao R (2021) Chronic variable stress induces hepatic Fe (II) deposition by up-regulating ZIP14 expression via miR-181 family pathway in rats. Biology 10:653–666. https://doi.org/10.3390/biology10070653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hwang KA, Hwang HJ, Hwang YJ, Kim YJ (2020) Mustard leaf extract suppresses psychological stress in chronic restraint stress-subjected mice by regulation of stress hormone, neurotransmitters, and apoptosis. Nutrients 12:3640–3652. https://doi.org/10.3390/nu12123640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simone CN, Jolanta OJ, Adele C, Christina NB, Adrienne MH 3, Simon MA, Hannes S, Christopher RP, Michael P (2020)Chronic social stress in mice alters energy status including higher glucose need but lower brain utilization.Psychoneuroendocrinology 119:104747-104780https://doi.org/10.1016/j.psyneuen.2020.104747

  33. Seki M, Zha XM, Inamura S, Taga M, Matsuta Y, Aoki Y, Ito H, Yokoyama O (2019) Role of corticotropin-releasing factor on bladder function in rats with psychological stress. Sci Rep 9:9828–9834. https://doi.org/10.1038/s41598-019-46267-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coccurello R, RomanoA GG, Tempesta B, Fiore M, Giudetti AM, Marrocco I, Altieri F, Moles A, Gaetani S (2017) Increased intake of energy-dense diet and negative energy balance in a mouse model of chronic psychosocial defeat. Eur J Nutr 57:1485–1498. https://doi.org/10.1007/s00394-017-1434-y

    Article  PubMed  Google Scholar 

  35. Li Y, Zheng Y, Qian J, Chen X, Shen Z, Tao L, Li H, Qin H, Li M, Shen H (2012) Preventive effects of zinc against psychological stress-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats. Biol Trace Elem Res 147:285–291. https://doi.org/10.1007/s12011-011-9319-z

    Article  CAS  PubMed  Google Scholar 

  36. Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699. https://doi.org/10.1146/annurev.biochem.76.060305.152028

    Article  CAS  PubMed  Google Scholar 

  37. Stroud DA, Surgenor EE, Formosa LE, Reljic B, Frazier AE, Dibley MG, Osellame LD, Stait T, Beilharz TH, Thorburn DR, Salim A, Ryan MT (2016) Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 538:123–126. https://doi.org/10.1038/nature19754

    Article  CAS  PubMed  Google Scholar 

  38. Psarra AM, Sekeris CE (2011) Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: role of the mitochondrial glucocorticoid receptor. Biochim Biophys Acta 1813:1814–1821. https://doi.org/10.1016/j.bbamcr.2011.05.01

    Article  CAS  PubMed  Google Scholar 

  39. Hunter RG, Seligsohn M, Rubin TG, Griffiths BB, Ozdemir Y, Pfaff DW, Datson NA, McEwen BS. Stress and corticosteroids regulate rat hippocampal mitochondrial DNA gene expression via the glucocorticoid receptor. Proc Natl Acad Sci USA 113:9099–9104. https://doi.org/10.1073/pnas.1602185113

  40. Ortmann CF, Réus GZ, Ignácio ZM, Abelaira HM, Titus SE, Carvalho P, Arent CO, Santos MABD, Matias BI, Martins MM, Campos AM, Petronilho F, Teixeira LJ, Morais MOS, Streck EL, Quevedo J, Reginatto FH (2016) Enriched flavonoid fraction from cecropia pachystachya trécul leaves exerts antidepressant-like behavior and protects brain against oxidative stress in rats subjected to chronic mild stress. Neurotox Res 29:469–483. https://doi.org/10.1007/s12640-016-9596-6

    Article  CAS  PubMed  Google Scholar 

  41. Picard M, Trumpff C, Burelle Y (2019) Mitochondrial psychobiology: foundations and applications. Curr Opin Behav Sci:142–151. https://doi.org/10.1016/j.cobeha.2019.04.015

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2017YFE0129900); the National Natural Science Foundation of China (31872439); the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control.

Author information

Authors and Affiliations

Authors

Contributions

Shihui Guo, Yingying Dong, and Xiaoxian Cheng performed the experiments and analyzed and interpreted the results. Zijin Chen performed the animal experiment, recorded and analyzed the phenotypic data, and took the samples. Wenqiang Ma, Yingdong Ni, and Ruqian Zhao contributed to experimental concepts and design. Wenqiang Ma supported the project and written the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenqiang Ma.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Dong, Y., Cheng, X. et al. Chronic Psychological Stress Disrupts Iron Metabolism and Enhances Hepatic Mitochondrial Function in Mice. Biol Trace Elem Res 201, 1761–1771 (2023). https://doi.org/10.1007/s12011-022-03269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03269-5

Keywords

Navigation